期刊文献+

一类具有非线性传染率SEIS传染病模型动力学分析 被引量:1

Dynamic analysis of a SEIS epidemic model with nonlinear contagious rate
下载PDF
导出
摘要 文章考虑一类具有非线性传染率且人口有输入输出的传染病模型,得到疾病控制的阀值:基本再生数R0.当R0<1时,无病平衡点是全局渐进稳定的,且疾病最终灭绝;当R0>1时,无病平衡点不稳定,而唯一的地方病平衡点是局部渐进稳定的. In this paper, considering a SEIS epidemic mode with nonlinear contagious rate, the threshold data Ro is obtained, which determines the existence of an infectious disease. When R0 〈 1 , diseasefree k0 equilibrium is globally and asymptotically stable. When Ro 〉 1 , the disease - free equilibrium ko is unstable and the unique endemic equilibrium K* is locally and asymptotically stable.
出处 《重庆文理学院学报(社会科学版)》 2013年第3期13-15,共3页 Journal of Chongqing University of Arts and Sciences(Social Sciences Edition)
关键词 传染病模型 平衡点 稳定性 阀值 epidemic model equilibrium point stability threshold
  • 相关文献

参考文献6

  • 1马知恩,王稳地,周义仓,等.传染病动力学的数学模型建模与研究[M].北京:科学出版社,2004.
  • 2张娟,李建全,马知恩.带有种群密度制约接触率的SIR流行病模型的全局分析(英文)[J].工程数学学报,2004,21(2):259-267. 被引量:13
  • 3Zhang Juan, Ma Zhien. Global dynamics of an SEIR epidemic model with saturating contact rate [ J ] . Math Biol,2003,185 : 15 - 32.
  • 4Liu W M, Hethcote H W, Levin S A . Dynamical behavior of epidemiological model with nonlinear incidence rates[J]. Math Biol, 1987,25:359 - 380.
  • 5Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[ J]. Math Biol, 1986,23 : 187 - 204.
  • 6Ruan S, Wang W. Dynamical behabior of an epidemic model with a nonlinear incidence rate [ J ]. Diff Equs, 2003,188 : 135 - 163.

二级参考文献14

  • 1Brauer F, van den Driessche. Models for transmission of disease with immigration of infectives[J]. Math Biosci, 2001; 171:143 - 154
  • 2Gao L Q, Hethcote H W. Disease transimission models with density-dependent demographics[J]. J Math Biol, 1992 ;30: 717 - 731
  • 3Greenhalgh D. Some thresholdand stability results for epidemic models with a density dependent death rate[J]. Theor Pop Biol,1992;42:130- 151
  • 4Bremermann H J, Thieme H R. A competitive exclusion principle for pathogen virulence[J]. J Math Biol, 1989 ;27:179 - 190
  • 5Hale J K. Ordinary differential equations[M]. New York: Wiley-Interscience,1969
  • 6Thieme H R. Convergence results and a Poincaré-Bendixson trichotomy for asymptotcally autonomous differential equations[J]. J Math Biol, 1992 ;30:755 - 763
  • 7Jeffries C, Klee V, P van denDriessche. Whenis a matrixsignstable[J]. CanJ Math,1997;29:315-326
  • 8Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J].J Math Biol, 1992; 30: 693 - 716
  • 9Hethcote H W. Three basic epidemiological models[M]. In: Levin S A, Hallam T G, Gross L J et al .Applied Mathmatical Ecology; Biomathematics, Springer Berlin, 1989; 18:119 - 114
  • 10Thieme H R, Castillo-Chavez C. On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic[M]. In: Castillo-Chavez C et al . Mathematical and statistical approaches to AIDS epidemiology. (Lecr Notes Biomath), Berlin He

共引文献13

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部