期刊文献+

运动诱导线粒体生物合成的分子机制研究

Molecular Mechanism of Exercise Training-induced Mitochondrial Biogenesis
下载PDF
导出
摘要 耐力训练不但能增加线粒体数量,也能提高线粒体池或线立体网络的功能或效率。线粒体容易损害,与核DNA相比,线粒体DNA受氧化应激和年龄的影响,易于缺失。骨骼肌细胞产生新的线粒体,维持健康,清除受损的线粒体,非常重要。骨骼肌一个最重要的适应是增强代谢的能力,提高运动成绩和健康。主要的基本机制涉及线粒体网络结构的调节,通过PGC-1α调节,生成和增加新的线粒体;通过线粒体自噬,清除受损或失调的线粒体。重构线粒体网络结构是运动诱导一个重要的适应。通过这一动力性过程,生成新的、健康的线粒体,替代老的、不健康的线粒体,增强运动后骨骼肌线粒体的数量和质量。 Endurance exercise seems to not only increase the number of organelles efficiency of the mitochondrial pool/network. However, mitochondria are subject to but also improve the function damage , and the mitochondrial DNA is especially susceptible to deletions caused by oxidative stress and aging compared with nuclear DNA. There- fore, it is imperative that muscle cells have means not only to generate new mitochondria but also maintain the healthy ones and remove the damaged/dysfunctional ones. In skeletal muscle, one of the most important adaptations is enhanced metabolic capacity, which helps improve performance and health. The primary underlying mechanisms involve the regulation of the mitochondrial network. The mechanisms involved in the generation and addition of new mitochondria, which is now known to be regulated by PGC-lot. The remodeling of the mitochondrial network through elimination of damaged/dysfunctional mitochondria through mitophagy are all of importance in exercise-in- duced adaptation. This dynamic process of replacing old unhealthy mitochondria with new healthy mitochondria un- derscores enhanced quantity and quality of mitochondria in skeletal muscle after exercise training.
出处 《江苏经贸职业技术学院学报》 2013年第2期56-60,共5页 Journal of Jiangsu Institute of Commerce
关键词 运动 适应 线粒体的生物合成 exercise adaptations mitochondrial biogenesis
  • 相关文献

参考文献37

  • 1Yan Z, Lira VA, Greene NP. Exercise Training-induced Regulation of Mitochondrial Quality [ J ]. Exerc Sport Sei Rev ,2012,40( 3 ) : 159 - 64.
  • 2Puigserver P, Wu Z, Park C, et al. A Coldinducible Coacti- vator of Nuclear Receptors Linked to Adaptive Thermogene- sis[ J]. Cell, 1998,92:829 - 39.
  • 3Krieger DA, Tate CA, Mcmillin-Wood J, et al. Populations of Rat Skeletal Muscle Mitochondria after Exercise and Im-mobilization [ J ]. J Appl Physiol, 1980,48:23 - 8.
  • 4Melov S, Hinerfeld D, Esposito L, et al. Multi-organ Char- acterization of Mitochondrial Genomic Rearrangements in Adlibitum and Caloric Restricted Mice Show Striking So- matic Mitochondrial DNA Rearrangements with Age [ J ]. Nucleic Acids Res, 1997,25:974 - 82.
  • 5Muoio DM, Koves TR. Skeletal Muscle Adaptation to Fatty Acid Depends on Coordinated Actions of the PPARs and PGC-lo: Implications for Metabolic Disease [ J]. Appl Physiol Nutr Metab,2007 ,32 :874 - 83.
  • 6Puigserver P, Spiegelman BM. Peroxisome Proliferator-acti- vated Receptor-Fcoactivator-lct(PGC-lc) : Transcriptional Coactivator and Metabolic Regulator [ J ]. Endocr Rev, 2003,24:78 - 90.
  • 7Uguccioni G, Hood DA. The Importance of PGC-1 o in Con- tractile Activity-induced Mitochondrial Adaptations[ J 1. Am J Physiol Endocrinol Metab,2011,300 :E361 -371.
  • 8Leick L, Wojtaszewski JF, Johansen ST, et al. PGC-lc is not Mandatory for Exercise and Training-induced Adaptive Gene Responsens in Mouse Skeletal Muscle [ J ]. Am J Physiol Endocrinol Metab, 2008,294 (2) : E463 - 74.
  • 9Leick L, Lyngby SS, Wojtasewski JF, et al. PGC-lo is Re- quired for Training-induced Prevention of Age-associated Decline in Mitochondrial Enzymes in Mouse Skeletal Mus- cle[ J]. Exp Gerontol,2010,45:336 - 342.
  • 10Lin J, Wu PH, Tarr PT, et al. Defects in Adaptive Energy Metabolism with CNS-linked Hyperactivity in PGC-lct Null Mice [ J ]. Cell, 2004,119 : 121 - 135.

二级参考文献51

  • 1马继政.PGC-1 α 与运动能力[J].南京体育学院学报(自然科学版),2008,7(1):1-3. 被引量:11
  • 2Coffey VG, Hawley JA. The molecular bases of training adaptation [J]. Sports Med, 2007, 37:737 -763.
  • 3Rose A J, Richter EA. Regulatory mechanisms of skeletal muscle protein turnover during exercise[ J]. J Appl Physiol, 2009, 106 : 1702 - 1711.
  • 4Deshmukh A, Coffey VG, Zhong Z, et al. Exercise - induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle [ J ]. Diabetes, 2006, 55 : 1776 - 1782.
  • 5Puigserver P, Wa Z, Spiegelman BM, et al. A cold - in - ducible coactivator of nuclear receptors linked to adaptive thermogenesis [J]. Cell, 1998, 9:829 -839.
  • 6Arany Z. PGC - 1 coactivators and skeletal muscle adaptations in health and disease [ J ]. Curr Opin Genet Dev, 2008, 18:426 - 434.
  • 7Rodgers JT, Lerin C, Gerhart - Hines Z, et al. Metabolic adapta- tions through the PGC -1α and SIRT1 pathways[J]. FEBS Lett, 2008,582:46 - 53.
  • 8Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway[ J ]. Genes Dev, 2006, 20:3347 - 3365.
  • 9Nakae J, Oki M, Cao Y. The FoxO transcription factors and meta- bolic regulation[J]. FEBS Lett, 2008,582:54 -67.
  • 10Deshmukh AS, Hawley JA, Zierath JR. Exercise - induced phospho - proteins in skeletal muscle[J]. Int J Obes (Lond) , 2008, 32:S18 -23.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部