期刊文献+

基于pH恒定补糖的生物基丁二酸高效合成

Enhanced bio-succinic acid synthesis based on glucose-fed with pH-constant
下载PDF
导出
摘要 通过确定大肠杆菌在产酸阶段葡萄糖的消耗与酸中和剂碳酸钠间的定量关系,建立了pH恒定补糖策略,能够使发酵液中葡萄糖浓度维持在稳定水平。与分批发酵相比,采用pH恒定补糖且维持葡萄糖浓度在较低的水平对丁二酸的积累是有利的。当采用pH恒定补糖并控制葡萄糖质量浓度在10g/L时,丁二酸最终质量浓度达到57.6 g/L,生产效率达到1.15 g/(L·h)。 A strategy based on pH-constant is established by investigating the ratio of glucose to Naz CO3 consumption during the succinic acid production stage. This method can maintain the glucose concentration at a constant level. Compared with the batch fer- mentation, it is favourable for succinic acid accumulation when pH-constant fermentation is adopted and glucose concentration is main- tained at a low level. In the case of the glucose fed-batch fermentation with pH-constant and controlling the glucose mass concentration at 10 g/L, the succinic acid titer and productivity reaches 57.6 g/L and 1.15 g/( L·h), respectively.
出处 《化学工业与工程技术》 CAS 2013年第2期61-64,共4页 Journal of Chemical Industry & Engineering
关键词 丁二酸 大肠杆菌 pH恒定 Succinic acid Escherichia coli pH-Constant
  • 相关文献

参考文献11

  • 1ZEIKUS J G, IAIN M K, ELANKOVAN P. Biotechnolo- gy of succinic acid production and markets for derived or industrial products [ J ]. Appl Microbiol Biotechnol, 1999, 51:545-552.
  • 2McKINLAY J B, VIEILLE C, ZEIKUS J G. Prospects for a bio-based succinate industry [ J ]. Appl Microbiol Bio- technol, 2007, 76 (4) : 727 - 40.
  • 3姜岷,马江锋,陈可泉,王益娜,于丽.重组大肠杆菌产琥珀酸研究进展[J].微生物学通报,2009,36(1):120-124. 被引量:17
  • 4VEMURI G N, EITEMAN M A, ALTMAN E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Esche- richia coil [ J ]. Appl Environ Microbiol, 2002, 68: 1715 - 1727.
  • 5VEMURI G N, EITEMAN M A, ALTMAN E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions [J]. J Ind Microb Biotechnol, 2002, 28:325 - 332.
  • 6JIANG M, LIU S, MA J, et al. Effect of growth phase feeding strategies on succinate production by metabolical- ly engineered E. coli [ J ]. Appl Environ Mierobiol, 2009, 76(4) : 1298 - 1300.
  • 7MARTINEZ I, BENNETT G N, SAN K Y. Metabolic im- pact of the level of aeration during cell growth on anaero- bic succinate production by an engineered Escherichia eo- li strain [J]. Metab Eng, 2010(9) :2.
  • 8LU S, EITEMAN M A, ALTMAN E. Effect of C02 on succinate production in dual-phase Escherichia coli fer- mentations [J]. J Biotechnol, 2009, 143:213-223.
  • 9LU S, EITEMAN M A, ALTMAN E. pH and base coun- terion affect succinate production in dual-phase Esche- richia coli fermentations [ J ]. J Ind Microbiol Biotechnol, 2009, 36:1101 - 1109.
  • 10WU H, LI Z, ZHOU L, et al. Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaple- rotic activities in the preceding aerobic culture [ J]. Ap- plied and Environmental Microbiology, 2007, 73 (24) : 7837 - 7843.

二级参考文献38

  • 1王庆昭,吴巍,赵学明.生物转化法制取琥珀酸及其衍生物的前景分析[J].化工进展,2004,23(7):794-798. 被引量:43
  • 2Lee PC, Lee SY, Hong SH, et al. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnology Letters, 2003, 25(2): 111-114.
  • 3McKinlay JB, Zeikus JG, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Applied and Environmental Microbiology, 2005, 71(11): 6651-6656.
  • 4Lee JW, Lee SY, Song H, et al. The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics, 2006, 6(12): 3550-3566.
  • 5Clark DP. The fermentation pathways of Escherichia coli. FEMS Microbiology Reviews, 1989, 63(3): 223-234.
  • 6Van der Werf M J, Guettler MV, Jain MK, et al. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiology, 1997, 167(6): 332-342.
  • 7Lin H, Bennett GN, San KY. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2005, 32(3): 87-93.
  • 8Chassagnole C, Noisommit-Rizzi N, Schmid JW, et al. Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnology and Bioengineering, 2002, 79(1): 53-73.
  • 9Stols L, Donnelly MI. Production of succinic acid through overexpression of NAD^+-dependent malic enzyme in an Escherichia coli mutant. Applied and Environmental Microbiology, 1997, 63(7): 2695-2701.
  • 10Hong SH, Lee SY. Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnology and Bioengineering, 2001, 74(2): 89-95.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部