期刊文献+

基于两步位操作匹配的实时目标识别跟踪算法 被引量:4

Real-time Target Recognition and Tracking Based on Two-step-bits Binary Operation Matching
下载PDF
导出
摘要 针对视频图像,提出了一种两步二进制位操作的目标识别跟踪算法。该算法基于改进的二进制鲁棒角点算法(BRISK),对特征描述符建立方法及匹配算法进行了改进:提出了采样点对选择策略和幅值-旋转两级描述符的建立方法;在特征点匹配阶段,提出"移位"结合"异或"的两步位操作特征匹配算法,并通过部分匹配及检测汉明重量阈值的方式进一步加快算法执行速度。实验结果表明,该改进方法具有较快的运算速度,目标平均跟踪速度达到80fps以上,且内存需求量小,更好的满足了视频图像目标实时识别跟踪的应用要求。 Aiming at the target recognition and tracking within video image,a combined two step bits operation algorithm which based on an improved binary robust invariant scalable keypoints(BRISK) algorithm was proposed.The improvements include descriptor building and feature matching methods.During descriptor building,a point pair selection strategy for reducing relativity and scope-rotation two steps feature descriptor were put forward.In feature matching stage,the algorithm which combined 'SHIFT'-'XOR' binary operations was used.To further improve feature matching speed,an accelerated method with partial matching and Hamming weight threshold checking was introduced.The result of experiments demonstrate that the proposed algorithm achieves the average target tracking speed of 80 frames per-second,which is faster than other corner feature algorithms.Therefore,it could meet the demand of real-time target recognition and tracking from video image more effectively.
出处 《弹箭与制导学报》 CSCD 北大核心 2013年第2期125-128,132,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 二进制 位操作 识别 跟踪 二进制鲁棒角点算法 binary bits operation recognition tracking BRISK
  • 相关文献

参考文献9

  • 1孙浩,王程,王润生.局部不变特征综述[J].中国图象图形学报,2011,16(2):141-151. 被引量:35
  • 2Mikolajczyk schmid. Scale & affine invariant interest pointdetectors[ J] . International Journal of Computer Vision,2004,60(1) :63 -86.
  • 3H Bay, T Tuytelaars,L Van Gool. SURF: Speeded up ro-bust features [ C] //Proceedings of the Ninth European Con-ference on Computer Vision ( ECCV),2006.
  • 4Ethan Rublee, Vincent Rabaud, Kurt Konolige, et al. ORB:An efficient alternative to SIFT or SURF[ C]//Proceedingsof the IEEE International Conference on Computer Vision(ICCV),2011.
  • 5Stefan Leutenegger, Margarita Chli,Roland Siegwart. BRISK:Binary Robust Invariant Scalable Keypoints [ C] //Proceed-ings of the IEEE International Conference on Computer Vi-sion (ICCV) , 2011.
  • 6E Rosten,T Drummond. Machine learning for high speedcomer detection [ C] //Proceedings of the European Confer-ence on Computer Vision (ECCV),2006.
  • 7M Calonder, V Lepetit, C Strecha, et al. BRIEF: BinaryRobust Independent Elementary Features [ C]//Proceedingsof the European Conference on Computer Vision(ECCV), 2010.
  • 8A Alahi,R Ortiz, P Vandergheynst. FREAK: Fast RetinaKeypoint [ C] //IEEE Conference on Computer Vision andPattern Recognition ( CVPR),2012.
  • 9孙抗,汪渤,郑智辉.基于局部亮度直方图特征的实时目标识别与跟踪[J].系统工程与电子技术,2011,33(9):1927-1931. 被引量:7

二级参考文献70

  • 1Moravec H. Towards automatic visual obstacle avoidance[ C ]// Proceedings of International Joint Conference on Artificial Intelligence. New York, USA : ACM Press, 1977 : 584.
  • 2Tuytelaars T, Gool L V. Matching widely separated views based on affine invariant regions [ J]. International Journal of Computer Vision, 2004, 59(1): 61-85.
  • 3Schaffalitzky F, Zisserman A. Multi-view matching for unordered image sets [ C ]//Proceedings of the 7th European Conference on Computer Vision. Cambridge, MA, USA: MIT Press, 2002: 414-431.
  • 4Pritchett P, Zisserman A. Wide baseline stereo matching [ C ]// Proceedings of the 6th International Conference on Computer Vision. New York, USA: ACM Press, 1998:754-760.
  • 5Lowe D G. Object recognition [ C ]// Proceedings of the Computer Vision. New York, 1157. from local scale-invariant features 7th International Conference on USA: ACM Press, 1999: 1150-.
  • 6Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (4) : 509- 522.
  • 7Johnson A, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999 ,21 (5) : 433- 449.
  • 8Obdrzalek S, Matas J. Object recognition using local affine frames on distinguished regions [ C ]//Proceedings of British Machine Vision Conference. Oxford, England: BMVA Press, 2002:113-122.
  • 9Mikolajczyk K, Leibe B, Schiele B. Local features for object class recognition [ C ]//Proceedings of International Conference on Computer Vision. New York, USA: ACM Press, 2005 : 1792- 1799.
  • 10Dorko G, Schmid C. Selection of scale invariant neighborhoods for object class recognition [ C ]//Proceedings of International Conference on Computer Vision. New York, USA: ACM Press, 2003:634-640.

共引文献40

同被引文献34

  • 1闫成新,桑农,张天序,曾坤.基于局部复杂度的图像过渡区提取与分割[J].红外与毫米波学报,2005,24(4):312-316. 被引量:25
  • 2郭云彪,尤新刚,张春田,周琳娜.面向信息隐藏的图像复杂度研究[J].电子学报,2006,34(6):1048-1052. 被引量:17
  • 3Lowe D G.Distinctive image features from scale-invariant key-points[J].International Journal of Computer Vision,2004,60 (2):91-110.
  • 4Bay H,Tuytelaars T,Van Gool L.Surf:Speeded up robust features[C] //Computer Vision-ECCV 2006.Springer Berlin Heidelberg,2006:404-417.
  • 5Harris C,Stephens M.A combined comer and edge detector[C] //Alvey vision conference.1988,15:50.
  • 6Rosten,Drummond T.Machine Learning for High speed Corner Detection[C] //European Conference on Computer Vision,Graz,Austria,2006:430-443.
  • 7ETHAN R,VINCENT R,KURT K,et al.Bradski.ORB:an efficient alternative to SIFT or SURF[J].International Conference on Computer Vision,2011.
  • 8Leutenegger S,Chli M,Siegwart R Y.BRISK:Binary robust invariant scalable keypoints[C] //Computer Vision (ICCV),2011 IEEE International Conference on.IEEE,2011:2548-2555.
  • 9Mair E,Hager G D,Burschka D,et al.Adaptive and generic corner detection based on the accelerated segment test[C] //Computer Vision-ECCV 2010.Springer Berlin Heidelberg,2010:183-196.
  • 10Fischler M A,Bolles R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部