期刊文献+

数列极限迫敛性定理的推广(英文)

The Generalization on Squeeze Theorem of Limit of Sequence
下载PDF
导出
摘要 极限论是微积分中基础和重要的概念.数列极限的迫敛性定理既能判断数列的收敛性,也给出其极限值。通过对数列极限迫敛性定理的条件加以改进,得到了它的推论,并用一个例子说明了该推论的应用。 The concept of the limit is a very fundamental and important idea in Calculus. The squeeze theorem gives an approach to prove the convergence of a given sequence and find its limit at the same time. With the improving the conditions, two corollaries of the squeeze theorem are shown in this paper. As an illustration, an example is given which involves the property of series.
作者 曹丽华 张玉
出处 《大学数学》 2013年第2期79-81,共3页 College Mathematics
关键词 微积分 数列极限 收敛性 calculus the limit of sequencer convergence
  • 相关文献

参考文献1

  • 1PAN ShengLiang Department of Mathematics,East China Normal University,Shanghai 200062,China SUN XiaoWei WANG YouDe Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China.A variant of the isoperimetric problem,PartⅠ[J].Science China Mathematics,2008,51(6):1119-1126. 被引量:1

二级参考文献10

  • 1Edler F.Vervollstndigung der Steinerschen elementargeometrischen Beweise für den Satz,das der Kreis grsseren Flcheninhalt besitzt als jede andere ebene Figur gleich grossen Umfangs[].Nachr Ges Wiss Gttingen.1882
  • 2Steiner J.Sur le maximum et le minimum des figures dans le plan,sur la sphère,et dans l‘espace en général,ⅠandⅡ[].Journal fur die Reine und Angewandte Mathematik.1842
  • 3Bandle C.Isoperimetric Inequalities and Applications[]..1980
  • 4Blaschke W.Kreis und Kugel[]..1956
  • 5Bonnesen T,Fenchel W.Theorie der Convexen Krper[]..1948
  • 6Burago Yu D,,Zelgaller V A.Geometric Inequalities[]..1988
  • 7Chavel I.Isoperimetric Inequalities,Differential Geometric and Analytic Perspectives[]..2001
  • 8Kazarinoff N D.Geometric Inequalities[]..1961
  • 9Mitrinovi D S,PariJ E,Volence V.Recent Advances in Geometric Inequalities[]..1989
  • 10Schneider R.Convex Bodies:the Brunn-Minkowski theory[].Encyclopedia of Mathematics and its Applications.1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部