摘要
设{X,X_n;n≥1}是一独立同分布的随机变量序列.如果|X_m|是新序列{|X_k|;k≤n}中的第r大元素,则令X_n^((r)=X_m.同时记部分和与修整和分别为S_n=sum from k=1 to n X_k和^((r))S_n=S_n-(X_n^((1))+…+X_n^((r))).该文在EX^2可能是无穷的条件下,得到了修整和^((r))S_n的广义强逼近定理.作为应用,建立了关于修整和以及修整和乘积的广义泛函重对数律.
Let {X, Xn; n ≥ 1} be a sequence of independent and identically distributed random variables, and let X(r) = Xm if |Xm| is the r-th maximum of {|Xk|; k ≤ n}. Define Sn=∑k=1^nXk and (r)Sn=Sn-(Xn^(1)+…+Xn^(r)=Xm.. This paper aims to establish a general strong approximation for the trimmed sums (r)Sn without variance, and as applications, general functional laws of the iterated logarithm for trimmed sums and products of trimmed sums are derived.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2013年第2期267-275,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(11126316,11101364,11201422,10901138)
浙江省自然科学基金(LQ12A01018,Q12A010066,Y6110110)资助
关键词
强逼近
修整和
乘积
泛函重对数律
Strong Approximation
Trimmed sums
Product
Functional law of the iteratedlogarithm.