期刊文献+

基于粒子群优化算法的扇区组合优化 被引量:6

Sector Optimum Partition Based on Particle Swarm Optimization
下载PDF
导出
摘要 航空运输业的不断发展给终端区容量带来了巨大的挑战。为了降低管制员的工作负荷,增加终端区的容量,对终端区的扇区优化进行研究,建立了终端区空域拓扑结构模型,利用Voronoi图进行终端区单元划分,并计算各航路点的工作负荷,建立扇区优化的数学模型,利用一种排列组合算法进行单元组合,将各单元的目标函数值作为优化函数,并结合粒子群优化算法求得最优解。最后,以成都终端区扇区优化为例进行了验证,证明了粒子群优化算法的有效性,可以很好地应用在以航路点为划分单元的扇区组合优化中。 The development of air transportation industry brings huge challenge to terminal capacity. In order to lessen air traffic controller workload and increase airspace capability, sector optimum partition of terminal area was studied, airspace topology structure was built, the terminal area could be divided into several units by means of the Voronoi polygon. The workload of each air route points could be calculated, and the mathematical model of sec- tor optimum partition was built. A kind of permutation and combination algorithm was used to recombine the units, the objective function value of each unit was regarded as optimization function, and the optimal solution could be found in combination with the particle swarm optimization. At last, an example of Chengdu terminal sector optimum is given, which shows particle swarm optimization is an effective method to apply into sector optimum partition based on air route points.
作者 罗军 吕焕亮
出处 《科学技术与工程》 北大核心 2013年第14期4130-4133,共4页 Science Technology and Engineering
基金 中国民用航空飞行学院学生科学基金科技项目(X2012-17)资助
关键词 航空运输 扇区优化 粒子群优化算法 管制员工作负荷 VORONOI图 空域拓扑结构 air transportationvoronoi polygon airspacesector optimum partitiontopology structureparticleswarm optimization controller work-
  • 相关文献

参考文献4

二级参考文献25

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8.[M].,..
  • 9.[M].,..
  • 10Tofukuji N. An enroute ATC simulation experiment for sector capacity estimation[J]. IEEE Transaction on Control Systems Technology. 1993,1(3):138~143.

共引文献424

同被引文献35

  • 1冯萍,谷文祥,曲爽.浅析遗传算法与进化策略[J].长春大学学报,2005,15(2):25-27. 被引量:11
  • 2张明,韩松臣.依据管制员工作负荷的扇区优化方法[J].交通运输工程学报,2005,5(4):86-89. 被引量:11
  • 3宗大伟,唐月红,韩松臣.关于空域扇区的优化划分[J].常熟理工学院学报,2007,21(2):6-11. 被引量:8
  • 4Brinton C R,Pledgie S.Airspace partitioning using flight clustering and computational geometry.Digital Avionics Systems Conference,2008.DASC 2008.IEEE/AIAA 27th.IEEE,2008:3.B.3-1-3.B.3-10.
  • 5Xue M.Airspace sector redesign based on Voronoi diagrams.Journal of Aerospace Computing,Information,and Communication,2009 ; 6(12):624-634.
  • 6Li J,Wang T,Savai M,et al.Graph-based algorithm for dynamic airspace configuration.Journal of guidance,control,and dynamics,2010; 33(4):1082-1094.
  • 7Jung J,Lai C F,Zelinski S.Benefits of mid-term flexible airspace management in presence of weather.AIAA Guidace Navigation,and Control Conference,Minneapolis,Minnesota,2011.
  • 8Wei J,Hwang I,Hall W.Mathematical programming based algorithm for dynamic terminal airspace configuration.12th AIAA Aviation Technology,Integration,and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Indianapolis,Indiana,2012.
  • 9李铮.终端区扇区划设方法研究.天津:中国民航大学,2009.
  • 10孔德福.终端区扇区优化技术研究.南京:南京航空航天大学,2011.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部