摘要
应用广义谐波平衡技术,将分数阶导数表示的回复力分解为幅值依赖的等效拟线性阻尼力和拟线性回复力.然后,应用基于广义谐和函数的随机平均法得到关于系统幅值的平均伊藤随机微分方程,系统幅值的稳态概率密度通过求解与之相应的平稳FPK方程得到.最后,用原方程的Monte Carlo模拟结果验证了近似解析解的正确性.
First, the restoring force modeled by a fractional derivative is separated into the equiavalent quasi-linear dissipative force and quasi-linear restoring force by using the generalized harmonic balance technique. Then, an averaged It6 stochastic differential equation for the amplitude is derived by using the stochastic averaging method based on the generalized harmonic function, and the Fokker-Planck-Kolmogorov (FPK) equation associated with the averaged It6 equation is solved to obtain the stationary probability densities of amplitude. Finally, the approximate analytical solutions are validated by those from the Monte Carlo simulation of original system.
出处
《中国科学:物理学、力学、天文学》
CSCD
北大核心
2013年第5期670-677,共8页
Scientia Sinica Physica,Mechanica & Astronomica
基金
国家自然科学基金(批准号:10772159
10932009
11272279
11002059)
教育部博士点新教师基金项目(编号:20103501120003)
福建省自然科学基金项目(编号:2010J05006)
中央高校基本业务费(编号:JB-SJ1010)资助项目