摘要
Argillaceous rocks are being considered as potential host rocks for deep geological disposal. For the research work in DECOVALEX-2011, 5 participant research teams performed simulations of a labora- tory drying test and a ventilation experiment for Mont Terri underground laboratory built in argillaceous rock formation. Our study starts with establishing a coupled thermo-hydro-mechano-chemical (THMC) processes model to simulate water transport in rock around the ventilated tunnel. Especially in this THMC formulation, a three-phase and two-constituent hydraulic model is introduced to simulate the processes which occur during tunnel ventilation, including desaturation/resaturation in the rock, phase change and air/rock interface, and to explore the Opalinus clay parameter set, It can be found that water content evolution is very sensitive to intrinsic permeability, relative permeability and capillary pressure in clay rock. Water loss from surrounding rock is sensitive to the change of permeability in clay which is induced by excavation damaged zone. Chemical solute transport in the rock near ventilation experiment tunnel is simulated based on the coupled THMC formulation. It can be estimated that chemical osmotic flow has little significance on water flow modeling. Comparisons between simulation results from 5 teams and experimental observations show good agreement. It increases the confidence in modeling and indi- cates that it is a good start for fully THMC understanding of the moisture transportation and mechanical behavior in argillaceous rock.
Argillaceous rocks are being considered as potential host rocks for deep geological disposal. For the research work in DECOVALEX-2011, 5 participant research teams performed simulations of a labora- tory drying test and a ventilation experiment for Mont Terri underground laboratory built in argillaceous rock formation. Our study starts with establishing a coupled thermo-hydro-mechano-chemical (THMC) processes model to simulate water transport in rock around the ventilated tunnel. Especially in this THMC formulation, a three-phase and two-constituent hydraulic model is introduced to simulate the processes which occur during tunnel ventilation, including desaturation/resaturation in the rock, phase change and air/rock interface, and to explore the Opalinus clay parameter set, It can be found that water content evolution is very sensitive to intrinsic permeability, relative permeability and capillary pressure in clay rock. Water loss from surrounding rock is sensitive to the change of permeability in clay which is induced by excavation damaged zone. Chemical solute transport in the rock near ventilation experiment tunnel is simulated based on the coupled THMC formulation. It can be estimated that chemical osmotic flow has little significance on water flow modeling. Comparisons between simulation results from 5 teams and experimental observations show good agreement. It increases the confidence in modeling and indi- cates that it is a good start for fully THMC understanding of the moisture transportation and mechanical behavior in argillaceous rock.
基金
the context of the international DECOVALEX project (DEmonstration of COupled models and their VALidation against EXperiments)
supported by National Nature Science Foundation of China under projects 51108356, 40772161 and 41272272
Quintessa Ltd. and University of Edinburgh were supported by the Nuclear Decommissioning Authority (NDA), UK
CEA was supported by Institut de Radioprotection et de Sreté Nucléaire (IRSN)
The Japanese Atomic Energy Agency (JAEA) and the Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (CAS) funded DECOVALEX and participated in the work