期刊文献+

一类对称范畴上的Hom-Hopf模 被引量:1

Hom-Hopf modules for a class of symmetric categories
原文传递
导出
摘要 设L是一个余三角Hopf代数。通过余模范畴LM中Hom-Hopf代数的概念,证明了Hom-Hopf代数的对偶也是LM中的Hom-Hopf代数。进一步给出了范畴LM中Hom-Hopf模的余不变子空间的定义并得到LM中的Hom-Hopf模基本定理。 Let L be a cotriangular Hopf algebra. By using the definition of Hom-Hopf algebras in LM, the theorem that the dual of a Hom-Hopf algebra in LM is also a Hom-Hopf algebra is proved. Furthermore, the coinvariant subspace of a Hom-Hopf module is defined and the fundamental theorem of Hom-Hopf module in LM is obtained.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第4期40-45,共6页 Journal of Shandong University(Natural Science)
基金 青年科学基金项目资助项目(11101128) 江苏省自然科学基金项目(BK2012736) 滁州学院自然科学基金资助项目(2010kj006Z)
关键词 Hom-Hopf代数 Hom-Hopf模 余模范畴 Hom-Hopf algebras Hom-Hopf modules category of comodules
  • 相关文献

参考文献15

  • 1HARTWING J T,LARSSON D, SILVESTROV S. Deformations of Lie algebras using (T-Derivations[ J]. J Algebra, 2006,295(2) :314-361.
  • 2MAKHLOUF A, SILVESTROV S. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras[M]// J Gen Lie Theory inMathematics, Physics and beyond. Berlin : Springer-Verlag,2009: 189-206.
  • 3MAKHLOUF A, SILVESTROV S. Hom-algebra structures[ J]. J Gen Lie Theory, 2008,3(2) :51-64.
  • 4MAKHLOUF A, SILVESTO S. Hom-algebras and Hom-coalgebras[ J]. J Algebra Appl, 2010,9(4) :553-589.
  • 5YAU D. Enveloping algebras of Hom-Lie algebras[ J]. J Gen Lie Theory, 2008, 2(2) :95-108.
  • 6YAU D. Hom-algebras and homology [J]. J Gen Lie Theory, 2009,10(2) :409421.
  • 7YAU D. Hom-bialgebras and comodule algebras[ J]. Int Electron J Algebra, 2010,8(1) :45-64.
  • 8YAU D. Horn-Yang-Baxter equation, Hom-Lie algebras,and quasitriangular bialgebras[ J]. J Physics A: Math Theor, 2009,42(16) :165-202.
  • 9FISCHMAN D, MONTGOMERY S. A Schur, s double centralizer theorem for cotriangular Hopf algebras and generalized Liealgebras[ J]. J Algebra, 1994,168(2) :594-614.
  • 10COHEN M,FISCHMAN D, WESTREICH S. Schur,s double centralizer theorem for triangular Hopf algebras [ J]. ProcAmer Math Soc, 1994,122( 1) : 19-29.

同被引文献9

  • 1SWEEDLE M. E. Hopf algebras[M]. New York: Benja- min, 1969.
  • 2DOI Y. Hopf modules in Yetter-Drinfeld eategories [J]. Comm in Algebra, 1998, 26(9) :3057-3070.
  • 3MAKHLOUF A, SILVESTO S. Hom-algebra structures [J]. J Gen Lie Theory, 2008, 3(2):51-64.
  • 4MAKHLOUF A, SILVESTO S. Hom-algebras and Hom- coalgebras[J]. J Algebra Appl, 2010, 9(4): 553 - 589.
  • 5YAU D. Enveloping algebras of Hom - Lie algebras[J]. J Gen Lie Theory, 2008, 2(2): 95 - 108.
  • 6YAU D. Hom-algebras and homology [J]. J Gen Lie Theo- ry, 2009,10(2):409 - 421.
  • 7YAU D. Hom-bialgebras and eomodule algebras [J]. Int E- lectron J Algebra, 2010,8(1): 45 64.
  • 8YAU D. Horn - Yang - Baxter equation, Hom- Lie al- gebras, and quasitriangular blalgebras [J]. J Physics A: Math Theor, 2009,42(16): 165 202.
  • 9CAENEPPEEL S, GOYVAERTS I. Monoidal Horn - Hopf Algebras[J]. Comm in Algebra. 2012, 40(6) .. 1933- 1950.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部