期刊文献+

星载激光测高仪大气干项延迟校正 被引量:9

Hydrostatic delay correction for satellite laser altimeter
下载PDF
导出
摘要 星载激光测高仪发射的激光脉冲在通过地球大气层时发生折射,导致激光路径的延长,为了获得高精度的测距结果,必须对大气延迟进行修正;而大气干项延迟在大气延迟中占主导作用,仅由测量位置的地表大气压力决定。通过推导静态大气在非理想气体条件下的流体静力学方程,得出地表气压与位势高度有关的大气压力模型,结合NCEP基于标准大气压层的气象数据和GLAS测量的时间经纬度和高程数据,对位势高度使用4阶Runge-Kutta算法进行数值积分得出地表气压,进而计算大气干项延迟。通过该方法和NCEP地表气压估计得出的干项延迟分别与GLAS官方公布的干项延迟对比,该方法计算结果的趋势与准确程度均占优,且最大干项延迟误差小于2 cm。证明通过流体静力学方程数值积分计算地表气压的方法能够得出对星载激光测高仪较为准确的大气干项延迟。 The laser pulse transmitted by satellite laser altimeter bends for atmospheric refraction and extends the ray paths, and it is necessary to correct the atmospheric delay to get accurate ranging results. The hydrostatic delay is the major component of total zenith delay, which is only decided by surface pressure. The hydrostatic equation of static atmosphere was deduced under the condition of non-ideal gas, and surface pressure model was established relevant to geopotential height. Combined with the meteorological data of NCEP and position and elevation data of GLAS, the surface pressure was calculated by numerical integration of 4 order Runge-Kutta algorithm, and then the hydrostatic delay was obtained. Through the respective comparisons between the hydrostatic delays got by this method and the NCEP estimated surface pressure with the GLAS official results, the trend and accuracy of this method are both better with the maximum error less than 2cm. It is concluded that the hydrostaticdelay of satellite laser altimeter can be corrected effectively and accurately by the method based on hydrostatic equation and numerical integration.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第4期909-914,共6页 Infrared and Laser Engineering
基金 国家"十二五"民用航天技术预先研究项目 国家自然科学基金(40901165) 中央高校基本科研业务费专项资金(274805 274470 274473)
关键词 激光测高仪 大气延迟 干项延迟 地表大气压力 laser altimeter atmospheric delay hydrostatic delay surface pressure
  • 相关文献

参考文献10

  • 1Kurtz N T, Markus T, Cavalieri D J, et al. Comparison of ICESat data with airbome laser altimeter measurements over arctic sea ice [J]. IEEE Transaction on Geoscience and Remote Sensing, 2008, 46(7): 1913-1924.
  • 2Gardner C S. Ranging performance of satellite laser altimeters [J]. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(5): 1061-1072.
  • 3Niell A E, Global mapping functions for the atmospheric delay at radio wavelengths [J]. The Journal of Geophysical Research, 1996, 101(B2): 3227-3246.
  • 4赵欣,张毅,赵平建,涂碧海.星载激光测高仪大气传输延迟对测距精度的影响[J].红外与激光工程,2011,40(3):438-442. 被引量:9
  • 5马跃,李松,周辉,翁寅侃.利用自适应滤波星载激光测高仪回波噪声抑制方法[J].红外与激光工程,2012,41(12):3263-3268. 被引量:16
  • 6Trenbreth K E, Olsen J G. An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts [J]. Bulletin of the American Meteorological Society, 1988, 69(9): 1047-1057.
  • 7Owens J C. Optical refractive index of air: dependence on pressure, temperature, and composition [J]. Applied Optics, 1967, 6(1): 51-59.
  • 8McGarry J. Correlation and prediction of the vapor pressures of pure liquids over large pressure ranges [J]. Industrial and Engineering Chemistry Process Design and Development, 1983, 22(2): 313-322.
  • 9Parrish D F, Derber J C. The National Meteorological Center's spectral statistical interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8): 1747-1763.
  • 10Moritz H. Geodetic reference system 1980 [J]. Bulliten Geodesique, 1980, 54(3): 395-405.

二级参考文献19

  • 1Herring T A, Quinn K. Atmospheric delay correction to GLAS laser altimeter ranges [R]. Cambridge, MA: Massachusetts Institute of Technology, 1999.
  • 2Owens J C. Optical refractive index of air: dependence on pressure, temperature, and composition [J]. Appl Opt, 1967, 6: 51-59.
  • 3Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites [M]// Henriksen S W, Mancini A, Chovitz B H. The Use of Artificial Satellites for Geodesy: Geophysical Monographs Series, vol. 15. Washington, D C: AGU, 1972: 247-251.
  • 4Marini J W. Correction of satellite tracking data for an arbitrary tropospheric profile [J]. Radio Science, 1972, 7(2): 223-231.
  • 5Davis J L, Herring T A, Shapiro I I. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length [J]. Radio Science, 1985, 20(12): 1593 - 1607.
  • 6Herring T A. Modeling atmospheric delays in the analysis of space geodetic data [C]// Symposium on Refraction of Transatmospheric Signals in Geodesy, 1992: 157-164.
  • 7Niell A E. Global mapping functions for the atmosphere delay at radio wavelengths [J]. J Geophys Res, 1996, 101 (B2): 3227-3246.
  • 8US Naval Observatory, Royal Greenwich Observatory. The Astronomical Almanac for The Year 1999 [M]. Washington: United States Government Priming Office (USGPO); London: Her Majesty's Stationery Office(HMSO), 1998.
  • 9Kurtz N T, Markus T, Cavalieri D J, et al. Comparison of ICESat data with airbome laser altimeter measurements over arctic sea ice [J]. IEEE Transaction on Geoseience and Remote Sensing, 2008, 46(7): 1913-1924.
  • 10Rinne E, Shepherd A, Muir A, et al. A comparison of recent elevation change estimates of the devon ice cap as measured by the ICESat and EnviSAT satellite altimeters [J]. IEEE Transaction on Geoseienee and Remote Sensing, 2011, 49 (6): 1902-1910.

共引文献23

同被引文献65

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部