期刊文献+

污染环境中微生物培养模型的分析

Analysis of Chemostat Model with Pulsed Input in a Polluted Environment
下载PDF
导出
摘要 恒化器是一个简单易于采用的用来培养微生物的实验装置。它被用做研究微生物的增长并有着对参数易于测量的优点。但是,关于恒化器模型的研究大都忽略了环境污染的情况。因此,本文考察在污染的环境中脉冲输入营养基Monod-Haldane恒化器模型.应用Floquet乘子理论和脉冲微分比较定理,得到微生物灭绝周期解是全局渐近稳定的充分条件,这意味着微生物培养失败。同时,得到在污染环境中微生物培养成功的条件,也就是系统持续生存的条件。最后讨论污染的环境对微生物培养的影响。 The chemostat is a simple and well-adopted laboratory apparatus used to culture microorganisms. It can be used to in- vestigate microbial growth and has the advantage that parameter- sare easily measurable. However, existing theories on ehemostat model largely ignore effects of the environmental pollution. Therefore, in this paper, we consider a Monod-Haldane chemo- star model with with pulsed input in a polluted environment. By using the Floquet theorem and comparison theory of impulsive differential equation, we obtain the sufficient conditions for the global asymptotical stability of microorganism-extinction periodic solution. Which shows the population of m icroorganisms will be eventually extinct. In the same time, we proved that the system is permanent under appropriate conditions on the polluted environ- ment. In this case, the microorganism is obtained. Finally, we discuss the effects of the polluted environment on the culture of microorganisms.
作者 黄雅丽
出处 《科教文汇》 2013年第12期104-107,共4页 Journal of Science and Education
关键词 污染环境 恒化器 稳定性 灭绝性 持久性 pollution environment chemostat stability extinction permanence
  • 相关文献

参考文献9

二级参考文献21

  • 1罗桂烈,李德林,朴仲铉.一类多分子反应模型的极限环[J].广西师范大学学报(自然科学版),1994,12(4):28-32. 被引量:2
  • 2陈文源 范先令.隐函数定理[M].兰州:兰州大学出版社,1996.148-151.
  • 3HSU S B,HUBELL S P,WALTMAN P.A mathematical theory for single-nutrient competition in continuous culture of micro-organism[J].Siam J Appl Math,1997,32:366-383.
  • 4BARCLAY H J. Models for pest control using predator release, habitat management and pesticide release in combination [J]. J Appl Ecology, 1982, 19: 337-348.
  • 5VAN LENTERN J C. Integrated pest management in protected crops [A]. DENT D. Integrated Pest Managment [M]. London: Chapman & Hall, 1995.
  • 6WU P L. Stability of Volterra model with mutual interference [J]. J Jiangxi Norm Univ, 1986, 2: 42-45.
  • 7LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differential Equations [M]. Singapore: World Scientific, 1989.
  • 8BAINOV D D, SIMEONOV P S. Impulsive Differential Equations: Periodic Solutions and Applications [M]. New York: John Wiley & Sons, 1993.
  • 9LAKMECHE A, ARINO O. Bifurcation of non trival periodic solutions of impulsive differential equations arising chemotherapeutic treatment [J]. Dyn of Continuous, Discrete and Impulsive Syst, 2000, 7: 265-287.
  • 10SMITH H L,WALTMAN P.The theory of the chemostat[M].Cambridge:Cambridge University Press,1995.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部