期刊文献+

图像分解的多尺度变分模型 被引量:1

A Multiscale Variational Model for Image Decomposition
下载PDF
导出
摘要 该文提出了一种新的多尺度变分图像分解模型。首先在Tadmar的分层多尺度变分模型的基础上,给出了一种新的1(B V,H-)分层多尺度图像分解方法,然后在逆尺度空间上积分"尺度"图像并将拉普拉斯算子作用于曲率项就得到了新的积分微分方程。该方程包含一个单调递增的尺度函数,它的值与残差图像的星范数成反比。接着讨论了该方程的重要性质,并给出了数值离散算法。理论分析与数值实验表明新的积分微分方程是一种有效的图像分解模型。 This paper presents a novel multiscale variational image decomposition model.Based on the hierarchical multiscale variational model of Tadmor,a novel 1(B V,H-)hierarchical multiscale image decomposition method is proposed,then the novel Integro-Differential Equation(IDE) is obtained by integrating in inverse scale space a succession of refined slices of the image and balancing a Laplacian of the curvature term at the finer scale.The IDE includes a monotone increasing scaling function which is shown to dictate the size of the residual image measured in the star-norm.Some theoretical properties of the novel IDE and its numerical implementation methods are given.Theoretical analysis and numerical experiments show the effectiveness of the IDE model.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第5期1190-1195,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61105011) 博士点新教师基金(20100203120010)资助课题
关键词 图像分解 泛函极小 总变差最小 积分微分方程 Image decomposition Functional minimization Total variation minimization Integro-differential equation
  • 相关文献

参考文献10

  • 1Rudin L I, Osher S, and Fatemi E. Nonlinear total variationbased noise removal algorithms[J]. Physica D, 1992,60(1-4):259-268.
  • 2Meyer Y. Oscillating patterns in image processing andnonlinear evolution equations[R]. University Lecture Series,22, American Mathematics Society, Providence, 2001.
  • 3Vese L A and Osher S J. Modeling textures with totalvariation minimization and oscillating patterns in imageprocessing [J]. Journal of Scientific Computing、2003, 19(1/3):553-572.
  • 4Osher S J, Sol6 A, and Vese L A. Image decomposition andrestoration using total variation minimization and the H 1norm[J]. Multiscale Modeling Simulation^ 2003,1(3): 349*370.
  • 5Aujol J F and Chambolle A. Dual norms and imagedecomposition models [J]. International Journal of ComputerVision, 2005, 63(1): 85-104.
  • 6BAI Jian FENG Xiangchu.Image Denoising and Decomposition Using Non-convex Functional[J].Chinese Journal of Electronics,2012,21(1):102-106. 被引量:9
  • 7Janev M, Pilipovic S, Atanackovic T, et al: Fully fractionalanisotropic diffusion for image denoising[J]. Mathematicaland Computer Modeling, 2011, 54(1): 729—741.
  • 8Tadmar E and AthavaJe P. Multiscale image repr^enfcationusing integral-differential equations[J]. Inverse Problems andImaging,2009, 3(4): 693-710.
  • 9avale P and Tadmar E. Integrodifferential equationbased on (BV, L1) image Decomposition [J]. SIAM Journalon Imaging Sciences^ 2011, 4(1): 300-312.
  • 10Marcucilli J A. A review of some inverse scale space methodsfor image restoration[D]. [Ph. D. dissertation], The Faculty ofSan Diego State University, 2012.

共引文献8

同被引文献15

  • 1He Kai-ming and Sun Jian. Image completion approaches using the statistics of similar patches[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12): 2423-2435.
  • 2Guillemot C and Le Meur O. Image inpainting: overview and recent advances[J]. IEEE Signal Processing Magazine, 2014, 31(1): 127-144.
  • 3Criminisi A, Pérez P, and Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
  • 4Sun Jian, Yuan Lu, Jia Jia-ya, et al.. Image completion with structure propagation[J]. ACM Transactions on Graphic, 2005, 24(3): 861-868.
  • 5Wexler Y, Shechtman E, and Irani M. Space-time completion of video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 463-476.
  • 6Barnes C, Goldman D B, Shechtman E, et al.. The PatchMatch randomized matching algorithm for image manipulation[J]. Communications of the ACM, 2011, 54(11): 103-110.
  • 7Zheng E, Dunn E, Jojic V, et al.. PatchMatch based joint view selection and depthmap estimation[C]. Computer Vision and Pattern Recognition (CVPR), Ohio, 2014: 1510-1517.
  • 8Cozzolino D, Poggi G, and Verdoliva L. Copy-move forgery detection based on PatchMatch[C]. IEEE International Conference on Image Processing (ICIP), Paris, 2014: 5312-5316.
  • 9He Kai-ming and Sun Jian. Computing nearest-neighbor fields via Propagation-Assisted KD-Trees[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Judith, 2012: 111-118.
  • 10Gieseke F, Heinermann J, Oancea C, et al.. Buffer k-d trees: processing massive nearest neighbor queries on GPUs[C]. Proceedings of the 31st International Conference on Machine Learning, Beijing, 2014: 172-180.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部