期刊文献+

效用及实时业务QoS联合保证的资源分配方案 被引量:2

Utility and Real Time Traffic QoS Jointly Guaranteed Resource Allocation Scheme
下载PDF
导出
摘要 为了有效利用和公平分配有限的网络资源,从而优化网络性能,提高社会福利,该文提出了一种效用及实时业务QoS联合保证的资源分配方案,将效用模型与具有不同服务质量需求的业务相结合,引入需求带宽和期望带宽,建立优化模型。方案不仅体现了资源分配效率的要求,达到系统效用的最优,同时优先保证实时业务的QoS要求,并达到QoS保证业务和尽力而为(Best Effort,BE)业务之间的公平分配。仿真结果表明,提出的方案较传统方案有效地提高了系统总效用,实现了面向服务的资源分配目标,优化了网络系统的整体性能。 Resource allocation plays a significant role in current wireless communications.In order to improve the performance of the whole wireless network and social welfare,the limited network resources should be allocated efficiently and fairly.In this paper,a jointly guaranteed resource allocation scheme is proposed,which firstly introduces the required bandwidth and the desired bandwidth,and then combines the utility model with services that have different QoS(Quality of Service) requirements.An optimized model is built and the corresponding resource allocation scheme is proposed.The scheme could guarantee different QoS requirements,while the utility of the system could be improved.Furthermore,it can realize the fairness allocation between QoS and BE(Best Effort) traffics.The simulation results show that the proposed scheme can effectively improve the system utility compared with the traditional method,meanwhile,the goal of service oriented allocation is achieved,and the performance of the whole system is optimized.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第5期1257-1261,共5页 Journal of Electronics & Information Technology
基金 科技部中芬国际合作项目(2010DFB10570)资助课题
关键词 效用函数 实时业务 服务质量 资源分配 公平性 Utility function Real time traffic Quality of Service(QoS) Resource allocation Fairness
  • 相关文献

参考文献13

  • 1China Internet Network Information Center: 30th ChinaInternet Development Report [OL]. http://news.sciencenet. cn/htmlnews/2012/7/267248.shtm. 2012.08.
  • 2Kelly F P, Maulloo A K, and Tan D K H. Rate control forcommunication networks: shadow prices, proportionalfairness and stability [J]. The Journal of the OperationalResearch Society, 1998, 49(3): 237-252.
  • 3Low S H and Lapsley D E. Optimization flow control, I: basicalgorithm and convergence[J]. IEEE/A CM Transactions onNetworking, 1999, 7(6): 861-874.
  • 4Lu Ning and Bigham J. On utility-fair bandwidth adaptationfor multi-class traffic QoS provisioning in wirelessnet works [J]. Computer Networks^ 2007, 51(10): 2554-2564.
  • 5Pischella M and Belfiore J C. Resource allocation forQoS-aware OFDMA using distributed network coordination[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4):1766-1775.
  • 6Mehrjoo M, Moazeni S, and Shen Xue-min. An interior pointpenalty method for utility maximization problems inOFDMA networks[C]. IEEE International Conference onCommunications, Dresden, Germany, 2009: 1-5.
  • 7Tang Mei-qin, Long Cheng-nian, and Guan Xin-ping. Non-convex maximization for communication systems based onparticle swarm optimization[J]. Computer Communications,2010,33(7): 841-847.
  • 8Joseph V and De Veciana G. Variability aware networkutility maximization [OL]. http://arxiv.org/abs/llll.3728.
  • 9Herzen J, Aziz A, Merz R, et al. A measurement-basedalgorithm to maximize the utility of wireless networks[C].Proceedings of the 3rd ACM Workshop on Wireless of theStudents, Las Vegas, 2011, D01:10.1145/2030686.2030691.
  • 10Chen Li and Wang Bin. Utility-based resource allocation formixed traffic in wireless networks[C]. IEEE INFOCOM 2011International Workshop on Future Media Networks andIP-based TV, Shanghai, 2011: 91-96.

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部