期刊文献+

Relaxation and Nonoccurrence of the Lavrentiev Phenomenon for Nonconvex Problems

Relaxation and Nonoccurrence of the Lavrentiev Phenomenon for Nonconvex Problems
原文传递
导出
摘要 The paper studies a relaxation of the basic multidimensional variational problem, when the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is shown that in this setup, the integral of a variational problem must satisfy a classical growth condition, unlike the case of uniform convergence. The relaxations constructed here imply the existence of a Lipschitz convergent minimizing sequence. Based on this observation, the paper also shows that the Lavrentiev phenomenon does not occur for a class of nonconvex problems. The paper studies a relaxation of the basic multidimensional variational problem, when the class of admissible functions is endowed with the Lipschitz convergence introduced by Morrey. It is shown that in this setup, the integral of a variational problem must satisfy a classical growth condition, unlike the case of uniform convergence. The relaxations constructed here imply the existence of a Lipschitz convergent minimizing sequence. Based on this observation, the paper also shows that the Lavrentiev phenomenon does not occur for a class of nonconvex problems.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第6期1185-1198,共14页 数学学报(英文版)
关键词 Multidimensional variational problem RELAXATION Lavrentiev phenomenon Multidimensional variational problem, relaxation, Lavrentiev phenomenon
  • 相关文献

参考文献29

  • 1Lavrentiev, M. M.: Sur quelques problemes du calcul des variations. Annali di Matematica, Pura et Applic., 4, 7-28 (1926).
  • 2Cesari, L.: Optimization-Theory and Applications, Springer Verlag, New York-Heidelberg-Berlin, 1983.
  • 3Tihomirov, V. M.: A remark on Lavrentiev phenomenon. Turkish J. Math., 18, 111-113 (1994).
  • 4Ball, J. M., Mizel, V. J.: Singular minimizers for regular one-dimensional problems in the calculus of variations. Bull. Amer. Math. Soc., 11, 143-146 (1984).
  • 5Loewen, Ph.D.: On the Lavrentiev phenomenon. Canad. Math. Bull., 30, 102-108 (1987).
  • 6Buttazzo, G., Mizel, V.: Interpretation of the Lavrentiev pnenomenon by relaxation. J. Funct. Anal., 110 434 460 (1992).
  • 7Buttazzo, G., Belloni, M.: A Survey of Old and Recent Results about the Gap Phenomenon. In: R Lucchetti, J. Revalski (Eds.), Recent Developements in Well-Posed Variational Problems, Math. Appl. Vol 331, Kluwer Academic Publishers, Dodrecht, 1995.
  • 8Mizel, V. J.: New developments concerning the Lavrentiev phenomenon. In: Calculus of Variations and Differential Equations (Haifa, 1998), Chapman 8z Hall/CRS Res. Notes Math. Vol. 410, Roca Raton, FL, 2000.
  • 9Ambrosio, L., Ascenzi, O., Buttazzo, G.: Lipscitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. AppL, 142, 301-316 (1989).
  • 10De Arcangelis, R.: The Lavrentiev phenomenon for quadratic functionals. Proc. Roy. Soc. Edinburgh Sect. A, 125, 329-339 (1995).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部