期刊文献+

An analog of double electromagnetically induced transparency with extremely high group indexes

An analog of double electromagnetically induced transparency with extremely high group indexes
原文传递
导出
摘要 An asymmetric metamaterial exhibiting an analog of double electromagnetically induced transparency (EIT) in the middle-infrared region is reported. The metamaterial consists of two-layered arrays of Ushaped rings embedded in a medium, with the lower layer rotated by 90°. Our simulations demonstrate that both maximum group indexes are extremely high at the two EIT-like positions. The group index reaches about thrice the currently reported maximum value at the high-frequency EIT-like position. The transmittance at the two transparency positions also possesses extremely high Q factors, which is conducive to controlling the propagation of electromagnetic waves. An asymmetric metamaterial exhibiting an analog of double electromagnetically induced transparency (EIT) in the middle-infrared region is reported. The metamaterial consists of two-layered arrays of Ushaped rings embedded in a medium, with the lower layer rotated by 90°. Our simulations demonstrate that both maximum group indexes are extremely high at the two EIT-like positions. The group index reaches about thrice the currently reported maximum value at the high-frequency EIT-like position. The transmittance at the two transparency positions also possesses extremely high Q factors, which is conducive to controlling the propagation of electromagnetic waves.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第5期46-48,共3页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.BK2011203) the Graduate Innovation Project of Jiangsu Province(No.CXLX110908) the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China
关键词 Electromagnetic wave propagation METAMATERIALS Electromagnetic wave propagation Metamaterials
  • 相关文献

参考文献20

  • 1K. J. Boiler, A. Imamolu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
  • 2Y. Zhang, K. Hayasaka, and K. Kasai, Phys. Rev. A 71, 062341 (2005).
  • 3S. Harris and L. Hau, Phys. Rev. Lett. 82, 4611 (1999).
  • 4H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev. Lett. 94, 073903 (2005).
  • 5S. Jarchi, J. R. Mohassel, and R. F. Dana, J. Electro- magn. Waves Appl. 24. 755 (2010).
  • 6G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
  • 7V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasi- makis, and N. I. Zheludev, Phys. Rev. Lett. 99, 147401 (2007).
  • 8Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 97, 114101 (2010).
  • 9Z. G. Dong, S. Y. Lei, M. X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, Phys. Rev. E 77, 056609 (2008).
  • 10M. Kang, H. X. Cui, Y. Li, B. Gu, J. Chen, and H. T. Wang, J. Appl. Phys. 109, 014901 (2011).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部