期刊文献+

压电液压隔振器的能量回收特性分析与测试 被引量:1

Energy Harvesting Performance of a Piezo-Hydraulic Vibration Isolator
下载PDF
导出
摘要 为实现高性能的振动主动控制、振动能量回收以及基于能量回收的自供电半主动振动控制,提出一种压电液压隔振器.基于实际流体的可压缩性,建立了压电液压隔振器的能量回收系统模型并进行了模拟仿真分析,获得了相关要素对发电量的影响规律.结果表明,压电液压隔振器的发电能力随系统背压及液压缸振幅的增加而增加,且存在最佳压电振子直径、厚度以及直径-厚度比使发电量最大.采用Ф60×1.6 mm3单晶压电振子及Ф16×100mm3液压缸制作了试验样机,并以水为工作介质进行了不同频率、背压、激振器振幅条件下的试验测试.试验所获得的压电液压隔振器的最佳工作频率仅为6 Hz,可用于低频振动能量回收.在频率为6 Hz、激振器输入电压为9 V、背压为0.4 MPa时,发电量为2.42 mJ;当其他条件相同,背压为0.4 MPa时的发电量约为无背压时的20倍. A piezo-hydraulic vibration isolator (PHVI) was presented for active vibration control, vibra- tion energy harvesting, and self-powered semi-active vibration control based on energy harvesting. A the- oretical model for the PHVI to harvest vibration energy was established and simulated based on the com- pressibility of actual liquid. The analytical results show that the electrical energy generated from the PHVI depends greatly on system parameters, the obtained electrical energy increases with the increase of back- pressure and vibration amplitude of the cylinder, and there exist the optimal diameter and thickness of pi- ezodise and their ratio for the PHVI to achieve the maximal energy. A PHVI prototype was fabricated with a piezodisc measuring Φ16 × 1.6 mm3 and a cylinder measuring Φ16 × 100mm3. It was tested with water as liquid medium at different frequencies, backpressures, and exciter-amplitudes. The optimal frequency for the PHVI to achieve peak energy is 6 Hz, which is desirable for low-frequency vibration energy har- vesting. When the exciter is driven at 6 Hz, 9 V and .0. 4 MPa, the obtained electrical energy is 2.42 mJ. The electric energy under the backpressure of 0.4 MPa is about 20 times greater than that without baekoressure.
出处 《纳米技术与精密工程》 CAS CSCD 2013年第3期196-201,共6页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(51075371 51175478) 浙江省自然科学基金资助项目(Y4110315 Y1110529)
关键词 隔振器 压电液压 能量回收 vibration isolator piezo-hydraulic energy harvesting
  • 相关文献

参考文献14

  • 1Song G, Sethi V, Li H N. Vibration control of civil struc- tures using piezoceramic smart materials: A review [ J]. Engineering Structures, 2006, 28 ( 11 ) : 1513-1524.
  • 2田海民,缑新科.压电材料与智能结构在振动控制中的研究与前景展望[J].仪表技术与传感器,2007(8):7-9. 被引量:4
  • 3Jeon J. Passive vibration damping enhancement of piezoelec- tric shunt damping system using optimization approach [ J ].Journal of Mechanical Science and Technology, 2009, 23: 1435-1445.
  • 4孙浩,杨智春,李凯翔,解江,李斌,张玲凌.压电分流阻尼控制精密机械结构振动的研究[J].振动与冲击,2008,27(6):15-19. 被引量:2
  • 5Qiu Zhicheng, Han Jianda, Zhang Xianmin, et al. Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator [ J ]. Journal of Sound and Vibration, 2009, 326 (3/4/5): 438- 455.
  • 6Ji H, Qiu J, Badel A, et al. Semi-active vibration control of a composite beam by adaptive synchronized switching on voltage sources based on LMS algorithm [ J ]. Journal of In- telligent Material Systems and Structures, 2009, 20 ( 3 ) : 939 -947.
  • 7Ji H, Qiu J, Badel A, et al. Semi-active vibration control of a composite beam using adaptive SSDV approach [ J ]. Jour- nal of Intelligent Material Systems and Structures, 2009, 20 (3) : 401-412.
  • 8Lin J, Huang C J, Chang J, et al. Active-passive vibration absorber of beam cart seesaw system with piezoelectric trans- ducers [ J]. Journal of Sound and Vibration, 2010, 329 (20) : 4109-4123.
  • 9Ji H, Qiu J, Badel A, et al. Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy [ J]. Journal of Sound and Vibration, 2010, 329( 14): 2751-2767.
  • 10Giurgiutiu V, Rogers C A, Rusovici R. Solid-state actuation of rotor blade servo-flap for active vibration control [ J ]. Journal of Intelligent Material Systems and Structures, 1996, 7(2) : 192-202.

二级参考文献21

共引文献4

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部