期刊文献+

基于免疫多Agent的网络监控系统模型研究 被引量:7

Study on Agent Immune Network Monitoring System Model
下载PDF
导出
摘要 研究入侵检测问题,针对网络免疫系统检测器训练速度慢、网络系统自适应性差和阈值量化等问题,提出了免疫多A-gent的网络监控系统模型。在模型中,首先以抗体激活阈值为度量对网络事务集进行自体、非自体分类和网络成熟检测器的生成;然后对成熟检测器通过克隆优选策略和检测器影响权重函数进行分布式网络系统的成熟检测器筛选与优化,依据免疫系统的初次耐受应答生成能够对非自体抗原进行识别的记忆检测器;最后利用记忆检测器对实时获取的网络系统窗口数据进行抗原识别。仿真结果表明,提出的算法具有较好的检测率和较低的误测率,同时有效的降低了检测器的训练时间。 In order to solver the problem of network immune system detector slow training speed, network system adaptability difference and threshold value quantification, an agent immune network monitoring system model was pro- posed. In this model, firstly, the network transaction was sorted as antilogous and non-antilogous, and the network mature detector was generated with the antibody activation threshold as a measurement. Then, through cloning optimi- zation strategy and detector influence weighting function, the mature detector was screened and optimized. According to the immune system's first tolerance response, the memory detector was generated to recognize non-autoantibody, Finally, the memory detector was used to recognize antigen form the network system window data obtained in real- time. The simulation results show that this algorithm has higher detection rate and lower false rate of measurement, and at the same time, effectively reduce the training time of the detector.
出处 《计算机仿真》 CSCD 北大核心 2013年第5期213-216,共4页 Computer Simulation
基金 河南省科技攻关项目(2102210518) 河南省教育厅科学技术研究重点项目(2A520042)
关键词 人工免疫 网络监控 动态演化 实时监控 Artificial immune Network monitoring Dynamic evolution Real-time monitoring
  • 相关文献

参考文献9

二级参考文献53

共引文献75

同被引文献56

  • 1白林林,严斌宇,罗敬文,苟旭,卢苇.基于节点信任的LEACH协议簇头选举改进算法[J].四川大学学报(工程科学版),2012,44(S1):218-223. 被引量:12
  • 2李杰,朱维乐,王磊,杨浩淼.基于Wold模型和支持向量机的纹理识别[J].计算机研究与发展,2007,44(3):460-466. 被引量:4
  • 3刘伟,孟小峰,孟卫一.Deep Web数据集成研究综述[J].计算机学报,2007,30(9):1475-1489. 被引量:136
  • 4CH Kim.Differential fault analysis of AES:Toward reducing number of faults[J].Information Sciences,2012:43-57.
  • 5Stankovic M S, Johansson K H, Stipanovic D M. Distributed seeking of Nash equilibria with applications to mobile sensor networks[J]. IEEE Transaction on Automatic Control,2012,57(4):904-919.
  • 6张瑜慧,胡学龙,陈琳.基于支持向量机的图像分类[J].扬州大学学报(自然科学版),2007,10(2):42-46. 被引量:13
  • 7T Yardibi, et al: Source localization and sensing: a nonparamet- ric iterative adaptive approach based on weighted least squares[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2010,46 ( 1 ) :425 -d43.
  • 8谢承旺.不同种类支持向量机算法的比较研究[J].小型微型计算机系统,2008,29(1):106-109. 被引量:8
  • 9Q Y Zhu, et al. Optimal control of computer virus under a delayed model [ J]. Applied Mathematics and Computation, 2012,218 (23): 11613 - 11619.
  • 10M S Stankovic, K H Johansson, D M Stipanovic. Distributed see- king of Nash equilibria with applications to mobile sensor networks [J]. IEEE Transaction on Automatic ContM, 2012,57 (4) :904 -919.

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部