期刊文献+

一种面向排序的Top-N推荐算法 被引量:4

Ranking Oriented Algorithm for Top-N Recommendation
下载PDF
导出
摘要 研究用户优化服务算法问题,应为用户提供个性化的推荐服务的系统。Top-N推荐问题,是指通过对用户历史偏好信息的挖掘,给每个用户推荐N个最可能喜好的内容。针对上述问题,提出了一种面向排序的推荐算法EIBRO-MF,通过融合系统中的显式和隐式反馈数据,建立用户喜好的偏序对关系来训练协同过滤的参数模型,最后利用优化的模型参数给出推荐结果。仿真结果表明,与传统的协同过滤算法、以及只能利用隐式反馈数据的排序算法相比,提出的算法能大幅提高推荐列表的排名精准度。 Recommender system uses customers' historical preference data to provide personalized recommendation. Top-N recommendation problem is that systems recommend to each user N items that they probably like most. To address this problem, we proposed a ranking oriented algorithm EIBRO-MF. Firstly we blended explicit and implicit feedback data to construct user-item preference pairs. Then we used the preference pairs to train a collaborate filtering model and obtained the recommendation results at last. Experiments with real-world data sets demonstate that the proposed algorithm can greatly improve the ranking precision of recommendation lists in constract with alternative methods like traditional CF-based algorithm and ranking algorithm.
出处 《计算机仿真》 CSCD 北大核心 2013年第5期264-268,共5页 Computer Simulation
关键词 推荐系统 面向排序 显示反馈 隐式反馈 Recommender system Ranking oriented Explicit feedback Implicit feedback
  • 相关文献

参考文献12

  • 1张海燕,丁峰,姜丽红.基于模糊聚类的协同过滤推荐方法[J].计算机仿真,2005,22(8):144-147. 被引量:25
  • 2J L Herlocker, J A Konstan, A Borchers and J T Riedl. An algo- rithmic framework for performing collaborative filtering[ C ]. In SI- GIR, 1999:230-237.
  • 3R Jin, L Si and C Zhai. A study of mixture models for collaborative filtering[ J ]. Jounal of Information Retrieval, 2006,9 ( 3 ) : 357 - 382.
  • 4A Paterek. Improving regularized singular value decomposition for collaborative filtering[ C. In Proceedings of KDD Cup and Work- shop, 2007:5-8.
  • 5Y Koren, R Bell and C Volirtsky. Matrix factorization techniques for recommender systems[ J ]. IEEE Computer, 2009,42 (8) : 30- 37.
  • 6Y Koran. Factorization Meets the Neighborhood: a Muhifaceted Collaborative Filtering Model [ C ]. In Proceedings of KDD Cup and Workshop, 2008:426-434.
  • 7S Rendel, et al. BPR: Bayesian personalized ranking from implicit feedback C]. In UAI 09, 2009:452-461.
  • 8N N Liu and Q Yang. Eigenrank : a ranking orient- ed approach to collaborative filtering[ C]. In SIGIR, 2008:83-90.
  • 9B Miller, I Albert, S Lam, J Konstan and J Riedl. Movielens un- plugged: experiences with an occasionally connected recommder system[ C ]. In Proceedings of the 8th international conference on Intelligenct user interfaces, 2003 : 263-266.
  • 10J Bennett and S Lanning. The Netfilx Prize[ C. In Proceeding of KDD Cup and Workshop, 2007:3-6.

二级参考文献2

共引文献24

同被引文献17

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部