期刊文献+

大型仓储拣货路径优化算法研究 被引量:6

Research on Optimization of RFID-Based Large Warehouse Picking Path
下载PDF
导出
摘要 基于RFID的大型仓储,具有仓储规模大、货物精确定位且信息实时反馈,快速无纸化订单传送等特点,使拣货路径优化难度加大,传统的拣货模式无法满足要求。对此,结合蚁群和粒子群算法的优点,给出了蚁群-粒子群优化算法在基于RFID的大型仓储拣货路劲优化中的应用,使"蚂蚁"具有"粒子性",改进粒子群算法中初始解的选取,蚁群算法中信息素的更新方式,提高了"蚂蚁"和"粒子"的学习能力,避免单个粒子过早收敛和陷入局部最优解的问题。仿真结果表明,算法收敛速度快,寻优能力强,适用于基于RFID大型仓储拣货路径优化。 A large warehousing system based on RFID, is characterized by large scale, precise positioning of car- go, real-time information, fast paperless in the order transmittal and so on. So the optimization of order-picking rou- ting problem is difficult, the traditional order-picking patterns can not meet with the requirements. By integrating the advantages of both ant colony algorithm and particle swarm optimization, the hybrid algorithm based on ant colony al- gorithms and particle swarm optimization was put forward to design a large warehousing system based on RFID prob- lem. An improved particle swarm optimization algorithm was used to select initial solution and pheromone concentra- tion update. The learning ability of "ants" and "particle" was improved to avoid the problem of single particle prema- ture convergence and local optimal solution. The simulation results show that this algorithm converges fast, had has high precision, and is suitable for RFID large warehouse picking path optimization.
出处 《计算机仿真》 CSCD 北大核心 2013年第5期337-340,共4页 Computer Simulation
基金 广西科技计划项目(桂科攻11107006-10) 广西自然科学基金项目(桂科自0991240)
关键词 射频识别技术 蚁群算法 粒子群算法 大型仓储 RFID Ant colony algorithm Particle swarm optimization Large warehouse
  • 相关文献

参考文献10

  • 1G Dan- Tzing, J Ramser. The truck dispatching problem [ J ]. Management Science, 1959,10(6) :80-91.
  • 2Jeroen P Van D B. Analytic Expressions for the Optimal Dwell Point in An Automated Storage/Retrieval System [ J ]. Int. Pro- duction Economics, 2002,76( 1 ) :13-25.
  • 3L Kyunghee. Simulated annealing by grand canonical ensemble and the TSPs [ J ]. WSEAS Transactions on Computers, 2005,4 ( 8 ) : 890-897.
  • 4D Tuzun, L ! Burke. A two-phase tabu search approach to the lo- cation routing problem [ J ]. European Journal of Operational Reae- arch, 1999,116( 1 ) :87-99.
  • 5Baker, M Barrie, Ayechew. A genetic algorithm for the vehicle routing problem[ J]. Computers and Operations Research, 2003, 30(5 ) :787-800.
  • 6王庆斌,徐双英.自动化立体仓库拣选路径优化算法改进及求解效果对比研究[D].长安大学,2009.
  • 7李哲,田征.物流中心拣货单处理及拣货路径优化研究[D].大连海事大学,2011.
  • 8商允伟,刘长有,田国会,常发亮.神经网络在自动化立体仓库的一类作业优化中的应用[C].中国控制与决策学术年会论文集,1996.
  • 9Y Shi, R C Eberhart. A Modified Particle Swarm Optimizer[ C. IEEEE International Conference of Evolutionary Computation An- chorage,Alaska: IEEE Press, May, 1998.
  • 10J Kennedy, R Eberhart. Particle swarm optimization [ C ]. In: Proceedings of the 4th IEEE International Conference on Neural Networks, Piscataway: IEEE Service Center, 1995:1942-1948.

同被引文献57

  • 1李梅娟,陈雪波,张梅凤.基于群集智能算法的路径规划问题[J].清华大学学报(自然科学版),2007,47(z2):1770-1773. 被引量:8
  • 2陈伊菲,刘军.仓储拣选作业路径VRP模型设计与应用[J].计算机工程与应用,2006,42(6):209-212. 被引量:18
  • 3林雨秦,吴佩如.物流中心传统存储拣货路径之研究[D].台湾:台湾明新科技大学,2005-12.
  • 4Rene de Koster,Edo van der Poort.Rooting order pickers in warehouse: a comparison between optimal and heuristic solutions[J].IIE Transac- tions, 1998,30(5) :468-480.
  • 5Hall R W.Distance approximations for routing manual pickers in a warehouse[J].IIE Transactions, 1993,25:76-87.
  • 6Petersen Ⅱ C G.An evaluation of order picking routeing policies[J].In- ternational Journal of Operations&Production Research,1997,(17): 1 098-1 111.
  • 7Vaughan T S,Petersen C G.The effect of cross aisles on order picking efficiency[J].International Journal of Production Research, 1999,37:881- 897.
  • 8Caron F,Marchet G,Perego A.Layout design in manual picking system: a simulation approach[J].Integr Manuf Syst ,2000,(11):94-104.
  • 9Roodbergen K J,Koster R D.Routing method for warehouse with multi- ple aisles[J].International Journal of Production Research,2001,39: 1 865-1 883.
  • 10Roodbergen K J,De Koster R.Routing order pickers in a warehouse with a middle aisle[J].European ournal of Operational Research,2001, 122:32-43.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部