期刊文献+

基于高光谱图像技术的稻田苗期杂草稻识别 被引量:17

Identification for Weedy Rice at Seeding Stage Based on Hyper-spectral Imaging Technique
下载PDF
导出
摘要 以生长期为10 d的杂草稻和水稻为研究对象,采集其高光谱图像信息,对其进行滤波预处理后,利用主成分分析方法优选出1 448.89 nm和1 469.89 nm波长下的特征图像。对每个特征图像,分别提取其形状特征、纹理特征和颜色特征,共18个特征变量。基于这些特征变量,利用神经网络方法建立杂草稻和水稻的判别模型,模型训练时杂草稻和水稻的回判率都为100%;预测时,杂草稻的回判率为92.86%,水稻的回判率为96.88%。研究表明,利用高光谱图像技术快速鉴别稻田苗期杂草稻是可行的。 The weedy rice and rice in growth period of 10 d were investigated.The hyper-spectral image data were captured from weedy rice and rice leaves.After image data were filtered,the feature images at wavelength of 1 448.89 nm and 1 469.89 nm were optimized by principal component analysis method.For each feature image,shape feature,texture feature and color feature were extracted,and 18 feature variables in all were attained.Neural network method was used to build the discriminate model.The discriminating rates for weedy rice and rice were both 100% in training set.The discriminating rate for weedy rice was 92.86% and the discriminating rate for rice was 96.88% in prediction set.Experimental results showed that the hyper-spectral imaging technology could be used to identify weedy rice and rice at seeding stage.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期253-257,163,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家高技术研究发展计划(863计划)资助项目(2008AA10Z204) 江苏高校优势学科建设工程项目资助项目(苏财教(2011)8号)
关键词 杂草稻 水稻 高光谱图像 神经网络 Weedy rice Rice Hyper-spectral image Neural network
  • 相关文献

参考文献10

二级参考文献180

共引文献284

同被引文献261

引证文献17

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部