期刊文献+

渤海湾软黏土对埋设海底管线约束力的研究 被引量:14

Soil resistance acting on buried pipelines in Bohai Bay soft clay
下载PDF
导出
摘要 海底管线与地基土体的相互作用在管线设计中至关重要,针对海底管线在温度应力下发生整体屈曲变形时可能产生的竖直向上、水平向及轴向运动,研究地基土体对管线的约束力。结合渤海湾海底地表土质特点选取软黏土开展室内管土相互作用试验,研究不同直径、不同埋置率(上覆土厚与管线直径的比)的管线竖直向上运动、水平向运动以及轴向运动时土体抗力的发挥过程,采用数值方法对模型试验进行模拟,进而将模拟方法扩展应用于对实际工程管线的模拟分析。试验结果表明与管线轴向运动相比,当管线发生竖直向与水平向运动时,其所受土抗力的大小受到管线直径与埋置率的影响显著;综合室内试验数据及数值模拟分析结果,提出了黏土对管线最大约束力及达到最大约束力所需位移的计算公式。 During the design of submarine pipelines, it is a crucial problem to determine the interaction between the pipeline and the subsoil. The uplift, lateral and axial soil resistances acting on the pipelines are investigated considering the moving directions of the pipelines in the thermal overall buckling analysis. Soft clay is chosen as the supporting medium in view of geotechnical conditions in Bohai Gulf. A series of model tests are carried out to facilitate the establishment of substantial data base for a variety of burial pipeline topologies. In the tests, the pipes with different diameters are buried with different depth-to-diameter ratios. The uplift, lateral and axial resistances are recorded during the tests. Based on the test data, a numerical method is established and used to analyze an actual dimensional pipeline in practice. The test results show that the uplift and lateral soil resistances depend on the pipe diameters and cover depth more greatly than the axial soil resistance. According to the test data and numerical results, the experimental formulae are proposed to determine the maximum soil resistance and the corresponding displacement of pipelines for all their three moving directions.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2013年第5期961-967,共7页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金创新研究群体科学基金项目(51021004) 国家自然科学基金项目(40776055) 上海交通大学海洋工程国家重点试验室基金项目(1002)
关键词 管土相互作用 软黏土 模型试验 数值模拟 经验公式 pipeline-soil interaction soft clay model test numerical simulation empirical formula
  • 相关文献

参考文献12

  • 1刘润,闫澍旺,孙国民.温度应力下海底管线屈曲分析方法的改进[J].天津大学学报(自然科学与工程技术版),2005,38(2):124-128. 被引量:17
  • 2PALMER C, ELLINAS P, RICHARDS M, et al. Design of submarine pipelines against upheaval buckling[C]// Proceedings of22nd OTC, Houston. 1990:540 - 550.
  • 3LYONS Ct Soil resistance to lateral sliding of marine pipelines[C]// Proceedings of 5th Offshore TechnologyConference Houston. OTC 1876, 1973:479 - 484.
  • 4ANAND S, AGARWAL L. Field and laboratory studies for evaluating submarine pipeline frictional resistance [J]. Transactions of ASME, Journal of Energy Resources Technology, 1981, 103:250 - 254.
  • 5TAYLOR N, RICHARDSON D, GAN B. On submarine pipeline frictional characteristics in the presence of buckling[C]//Proc 4th International Symposium on Offshore Mechanics and Arctic Engineering, ASME, Dallas. 1985:508 -515.
  • 6TAYLOR N, TRAN C, RICHARDSON D. Interface modeling for upheaval subsea pipeline buckling[C]//Proceedings of 4th International Conference on Computational Methods and Experimental Measurements. Capri: Springer-Verlag, 1989: 269 - 282.
  • 7SCHAMINEE L, ZORN F, SCHOTMAN M. Soil response for pipeline upheaval bucking analyses: full-Scale laboratory tests and modeling[C]// OTC 6486, 22nd Annual OTC, Houston. 1990:563 - 572.
  • 8NIELSEN R, PEDERSEN T, GRUNDY K, LYNGBERG S. Design criteria for upheaval creep of buried subsea pipelines[J]. Transactions of the ASME, Journal of offshore Mechanics and Arctic En,ineerin,. 1990. 112:110 - 121.
  • 9BRANSBY F, NEWSON A, BRUNNUNG P. The upheaval capacity of pipelines in jetted clay backfill[J]. Intemational Journal of Offshore and Polar Engineering, 2002, 12(4): 280 - 287.
  • 10NEWSON T A, DELJOUI E Finite element modeling of upheaval buckling of buried offshore pipelines in clayey soils[C]//Soil and Rock Behavior and Modeling-Proceedings of the Geo Shanghai Conference, Shanghai. 2007:351 - 358.

二级参考文献25

  • 1刘润,闫澍旺,孙国民.温度应力下海底管线屈曲分析方法的改进[J].天津大学学报(自然科学与工程技术版),2005,38(2):124-128. 被引量:17
  • 2Taylor N, Gan A B. Submarine pipeline buckling-imperfection studies [ J ]. Thin- Walled Structures, 1986,4 (4) : 295-323.
  • 3Temdrup P P. Equilibrium of offshore cables and pipelines during laying [ J ]. Int Shipbuilding Progress, 1975,22 (12) :399--408.
  • 4Hobbs R E. The effect of soil modulus on pipeline stress[ J ]. Journal of the Transportation Engineering Division,ASCE, 1980,106( 11 ) :775-786.
  • 5Temdrup P P, Juncher J J. Buckling behaviour of imperfect spherical shells subjected to different load conditions [ J ].Thin Walled Structure, 1995,23 ( 14 ) :41-55.
  • 6Yen B C, Tsao C H, Hinkle R D. Soil-pipe interaction of heated oil pipelines [ J ]. Journal of the Pipeline Division,ASCE, 1981,107( 1 ) : 1-14.
  • 7Cassell A C, Hobbs R E. Numerical stability of dynamic relaxation analysis of non-linear structures[ J]. International Journal of Numerical Methods in Engineering, 1976, 10(6) :1 407-1 410.
  • 8Nielsen N J R, Pedersen P T, Grundy A K, et al. Design criteria for upheaval creep of buried subsea pipelines [ J ].Transactions of the ASME Journal of offshore Mechanics and Arctic Engineering, 1990,290(112) : 110-121.
  • 9Hobbs R E. In-service buckling of heated pipelines [ J ].Journal of Transportation Engineering, ASCE, 1984, 110(2) : 175-189.
  • 10Yun H D, Kyriakides S. Model for beam-mode buckling of buried pipelines [ J ]. Journal of Engineering Mechanics,1985,111 (2) : 235-253.

共引文献32

同被引文献91

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部