期刊文献+

正则区域的对数导数单叶性内径

The Inner Radius of Univalence by Pre-Schwarzian Derivative of Regulated Domain
下载PDF
导出
摘要 研究了单位圆到正则区域的共形映射的对数导数,讨论了对数导数范数的一些性质,得到了带凸角的正则区域在对数导数意义下的单叶性内径的一个下界估计,并推导出椭圆内部区域的对数导数意义下的单叶性内径为1. Making use of integral representation of a conformal map from the unit disk onto a regula pre-Schwarzian derivative of the conformal map is discussed. A new estimation of lower bound of the univalence by pre-Schwarzian derivative of a regulated domain with convex corners is obtained.
作者 罗贤 杨宗信
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期179-182,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11071063 11261022) 江西省教育厅科研课题(GJJ12175)资助项目
关键词 正则区域 对数导数 单叶性内径 regulated domain pre-Schwarzian derivative the inner radius of univalence ted domain, the inner radius of
  • 相关文献

参考文献4

二级参考文献26

  • 1Leila Miller-Van Wieren.Univalence criteria for classes of rectangles and equiangular hexagons[J].Ann Acad Sci Fenn Math,1997,22:407-424.
  • 2Nehari Z.The Schwarzian derivative and Schlicht functions[J].Bull Amer Math Soc,1949,55:545-551.
  • 3Hille E.Remarks on a paper of zeev Nehari[J].Bull Amer Math Soc,1949,55:552-553.
  • 4Lehtinen M.On the inner radius of univalency for non-circular domains[J].Ann Acad Sci Fenn Ser A I Math,1980,5:45-47.
  • 5Ahlfors L V.Quasi-conformal reflections[J].Acta Math,1963,109:291-301.
  • 6Ahlfors L V.Lectures on quasi-conformal mappings[M].New York:Nostrand Company,1966.
  • 7Ahlfors L V.Sufficient condition for quasi-conformal extension[J].Ann of Math Studies,1974,79:23-29.
  • 8Gehring F W.Univalent functions and the Schwarzian derivative[J].Commentarii Mathematici Helvetici,1977,52:561-572.
  • 9Lehto O.Remarks on theorem about the Schwarzian derivative and Schlicht function[J].J Analyse Math,1979,36:184-190.
  • 10Calvis D.The inner radius of univalence of normal circular triangles and regular polygons[J].Complex Variables and Elliptic Equations,1985,4:295-304.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部