期刊文献+

L-抽象基与模糊Round理想完备化

L-Abstract Basis and The Fuzzy Round Ideal Completion of L-Abstract Basis
原文传递
导出
摘要 首先引入了L-抽象基和模糊Round理想,并给出模糊Round理想的等价刻画,证明了一个模糊Domain的模糊Round理想同构于该模糊Domain。其次,研究了L-抽象基的模糊Round理想完备化,且证明了模糊偏序集的模糊Round理想完备化是模糊Domain。最后证明了模糊Domain的连续收缩是模糊Domain。 Firstly, characterization of isomorphic to the studied, and the continuous retract the L-abstract basis and the a fuzzy round ideal is given, it fuzzy round ideal are introduced, and the equivalent is proved that the fuzzy round ideal of a fuzzy domain is fuzzy domain. Secondly, the fuzzy round ideal completion of the L-abstract basis is fuzzy round ideal completion of a fuzzy poset is a fuzzy domain. Finally, a Scott of a fuzzy domain is a fuzzy domain.
作者 高超 赵彬
出处 《模糊系统与数学》 CSCD 北大核心 2013年第2期65-72,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11171196)
关键词 模糊Domain L-抽象基 模糊Round理想 模糊Round理想完备化 Fuzzy Domain L-abstract Basis Fuzzy Round Ideal Fuzzy Round Ideal Completion
  • 相关文献

参考文献16

  • 1樊磊,张奇业,向文艺,郑崇友.量化Domain的L-fuzzy式处理(Ⅰ)-Frame值广义序集及其伴随理论(摘要)[J].模糊系统与数学,2000,14(专辑):6-7.
  • 2樊磊,王万良.量化Domain理论的L-Fuzzy式处理(II) L-Fuzzy拟序集的表示[J].模糊系统与数学,2005,19(2):61-66. 被引量:1
  • 3姚卫.模糊偏序集上的模糊Scott拓扑及模糊拓扑空间的特殊化L序[D].北京:北京理工大学,2008.
  • 4Gierz G, et al. Continuous lattices and domains[M]. Cambridge University Press,2003.
  • 5Lawson J D. The round ideal completion via sobrification[J]. Topology Proceedings,1997,22:261-274.
  • 6Xu L S, Mao X X. When do abstract bases generate continuous lattices and L-domains[J]. Algebra Universalis, 2008,58(1):95-104.
  • 7Zhou Y H, Zhao B. Z-abstract Basis[J]. Electronic Notes in Theoretical Computer Science,2010,257 : 153- 158.
  • 8Ying M S. When is the ideal completion of abstract basis algebraic[J]. Theoretical Computer Science, 1996,159 (2): 355-356.
  • 9Waszkiewicz P. On domain theory over Girard quantales[J]. Theoretical Computer Science, 2009,92:169- 192.
  • 10P HLtjek. Metamathematics of Fuzzy Logic[M]. Dordrecht:Kluwer Academic Publishers,1998.

二级参考文献11

  • 1Abramsky s,Jung A.Domain theory[Z].Abramsky s,Gabbay D,Maibaum T.Handbook of logic in Computer science(vol.3).Oxford University Press,1995:1~168.
  • 2Alesi F,Baldan P,Belle G,Rutten J J M M.Solutions of functorial and non—functorial metric domain equations[J].Electronic Notes in Theoretical Computer Science,1995,1.
  • 3Barr M,Wells C.category theory for computing science[M].Prentice—Hall,1990.
  • 4樊磊 张奇业 向文艺 郑崇友.量化Doraain理论的L—FuzzY式处理(Ⅰ)—Frame值广义序集及伴随理论(摘要)[J].模糊数学系统,2000,14:6-7.
  • 5Fan L.A new approach to quantitative domain theory[J].Electronic Notes in Theoretical Computer Science.2001,45.
  • 6Lawvere F W.Metric spaces,generalized logic and closed categories[J].Rend.Sem.Mat.e.Fisico di Milano,1973,43:135~166.
  • 7Monteiro L.Semantic domains based on sets with families of equivalences[J].Electronic Notes in Theoretical Computer Science,1996,11.
  • 8Rutten J J M M·Elements of generalized uhrametric domain theory[J].Theoretical Computer science,1996,170:349~381.
  • 9Rutten J J M M,Turi D.On the foundations of final semantlcs:nonstandard sets,metric spaces,partial orders [A].De Bakker J w,De Roever W P,Rozenberg G.Proceedings of the REX workshop on semantcs lecture notes in computer science[C].Springer-Verlag,1992:477~530.
  • 10wagner K.SolVing recursive domain equations With enriched categories[D].Carnegie Mellon University,1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部