期刊文献+

一种基于核的混合c-均值聚类模型 被引量:1

A Kernel-based Hybrid c-means Clustering Model
原文传递
导出
摘要 FCM和PCM的混合模型可以克服它们单独聚类时的缺点,在聚类效果上有很大改进,但是对于特征不明显的样本而言,这种混合模型的聚类效果并不太好,为了克服这一缺点,本文引入Mercer核,提出了一种新的基于核的混合c-均值聚类模型(KIPCM),运用核函数使得在原始空间不可分的数据点在核空间变得可分。通过数值实验,得到了较为合理的中心值以及较高的正确分类率,证实了本文算法的可行性和有效性。 The hybrid model of FCM and PCM can overcome the shortcomings when they cluster separately. It has great improvement in the clustering effect. But the effect is not so well for the samples without obvious characteristics. In order to overcome this disadvantage, this paper introduces the Mercer kernel and proposes a new model called Kernel-based hybrid c-means clustering (KIPCM). This model makes it possible to cluster the data which are linearly non-separable in the original space into homogeneous groups in the kernel space by using kernel function. We get the better center values and the higher correct classification rate through numerical experiment. This confirms the feasibility and effectiveness of the algorithm in this paper, i
作者 杨敏星 杨明
出处 《模糊系统与数学》 CSCD 北大核心 2013年第2期91-97,共7页 Fuzzy Systems and Mathematics
基金 山西省自然科学基金资助项目(2010011002-1) 国家重点实验室基金资助项目(9140c12040051010) 国家自然基金资助项目(61071193)
关键词 Mercer核 混合c-均值聚类 核函数 Mercer Kernel Hybrid c-means Clustering Kernel Function
  • 相关文献

参考文献11

  • 1Bezdek J C. Pattern recognition with fuzzy objective function algorithm[M]. New York:Plenum Press,1981.
  • 2Krishnapuram R, Keller J M. A possibilistic approach to clustering[J]. IEEE Trans on Fuzzy Systems, 1993,1(1): 98-110.
  • 3Gustafson E E, Kessel W C. Fuzzy clustering with a fuzzy covariance matrix in Proc[C]//IEEE Conf. Decision and Control, San Diego, CA, 1979 : 761-766.
  • 4Pal N R, Pal K, Bezdek J C. A mixed c-means clustering model[C]//Proceedings of the IEEE Int. Conf. On Fuzzy Systems, Spain, 1997 : 11 - 21.
  • 5Pal N R, Pal K, Keller J, Bezdek J C. A possibilistic fuzzy c-means clustering algorithm [J]. IEEE Trans. Fuzzy Syst. ,2005,13(4) :517-530.
  • 6Krishnapuram R,Keller J. The possibilistic c-means algorithm: Insights and recommendations[J]. IEEE Trans. Fuzzy Syst. ,1996,4(3) :385-393.
  • 7Zhang J S, Leung Y W. Improved possibilistie c-means clustering algorithms[J]. IEEE Trans. on Fuzzy Systems, 2004,12(2):209-217.
  • 8Tushir M, Srivastava S. A new kernel based hybrid c-means clustering model[C]//Proceedings of IEEE Int. Conf. on fuzzy systems, London, 2007: 1 - 5.
  • 9Tushir M, Srivastava S. A new kernelized hybrid c-mean clustering model with optimized parameters[J]. Applied Soft Computing, 2010,10 : 381 - 389.
  • 10Bezdek J C, et al. Will the real IRIS data please stand up[J]. IEEE Trans on Fuzzy System, 1999,7 (3) :368- 369.

同被引文献26

  • 1周惠成,李丽琴,王本德.洪水预报误差分布的极大熵法[J].大连理工大学学报,2007,47(3):408-413. 被引量:11
  • 2姚才,金龙,黄明策,黄小燕.遗传算法与神经网络相结合的热带气旋强度预报方法试验[J].海洋学报,2007,29(4):11-19. 被引量:23
  • 3陈树伟,王延昭.一种基于模糊数相似度的风险分析方法[J].模糊系统与数学,1998,12(2):89-94.
  • 4李文秀,金龙.模糊神经网络在山区自然坡失稳预报中的应用[J].模糊系统与数学,2011,25(1):89-95.
  • 5Francois M, Longin. From value at risk to stress testing the extreme value approach[J].Journal of Banking & Finance, 2000,25 : 1097 - 1130.
  • 6Bier, Yacovo Y, et al. A survey of approaches for assessing and managing the risk of extremes[J]. Risk Analysis, 1999,19(1):83-94.
  • 7Liu H, Zhang D L. Analysis and prediction of hazard risks caused by tropical cyclones in Southern China with fuzzy mathematical and grey models[J]. Applied Mathematical Modelling, 2012,36 (2) : 626 - 637.
  • 8Shnon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948,27 : 379- 423,623- 635.
  • 9Jaynes E T. Informatiion theory and statistical mechanics [J]. The Phsical Review, 1957,106 (4):620- 630.
  • 10Brink A D. Minimum cross entropy thresholding [J]. Pattern Recognition, 1996,29 ( 1 ) : 179 - 188.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部