期刊文献+

I-fuzzy拓扑中的杨忠道定理 被引量:1

C.T.Yang’s Theorem in I-fuzzy Topology
原文传递
导出
摘要 用L-ukasiewicz逻辑语义的方法在I-fuzzy拓扑中引入了I-fuzzy导集的概念,且研究了它的一些性质,进一步在I-fuzzy拓扑空间框架下证明了关于所提出导集的杨忠道定理。 In this paper, by Lukasiewicz logic, we introduce a new definition of derived set and study it's some properties in I-fuzzy topology. And furthermore we prove C. T. Yang ' s theorem concerning derived set in the framework of I-fuzzy topology.
出处 《模糊系统与数学》 CSCD 北大核心 2013年第2期98-103,共6页 Fuzzy Systems and Mathematics
基金 内蒙古自然科学基金资助项目(2012MS0121 2010MS0118) 内蒙古自治区高等学校科学技术研究项目(NJZY11033) 内蒙古师范大学研究生科研创新基金资助项目(CXJJS12030)
关键词 Lukasiewicz逻辑 I-fuzzy拓扑 拟差 导集 杨忠道定理 Lukasiewicz Logic I-fuzzy Topology Quasi-difference Derived Set C. T. Yang' s Theorem
  • 相关文献

参考文献18

  • 1Chang C L. Fuzzy topological spaces[J]. J. Math. Anal. Appl. , 1968,24: 182 - 190.
  • 2Hohle U, Sostak A P. Upper semi-continuous fuzzy sets and applications[J]. Journal of Mathematical Analysis and Applications, 1980,78 (2) : 659 - 673.
  • 3Kubiak T. On fuzzy topologies[D]. Poznan:Adam Mickiewicz,1985.
  • 4Sostak A P. On a {uzzy topological structure[J]. Suppl. Rend. Circ. Mat Palermo Ser. II, 1985,2 : 89-103.
  • 5Ying M S. A new approach for fuzzy topology(I)[J]. Fuzzy Sets and Systems, 1991,39:303-321.
  • 6Liu Y M, Luo M K. Fuzzy topology[M]. Singapore: World Scientific Publication,1997.
  • 7Pu P M, Liu Y M. Fuzzy topology(I)[J]. Journal of Mathematical Analysis and Applications, 1980,76:571-599.
  • 8李中夫.一类L-fuzzy拓扑空间中L-fuzzy点的邻近构造[J].数学研究与评论,1982.2:37-44.
  • 9白永成.L-fuzzy拓扑空间中的N-导算子[J].陕西师大学报(自然科学版),1990,18(3):8-11. 被引量:9
  • 10Xuan L X. On the accumulation point of fuzzy sets[J]. Fuzzy Sets and Systcms,1994,68:105-113.

二级参考文献20

  • 1Chang C. L., Fuzzy topological space, J. Math. Anal. Appl., 1968, 24: 182-190.
  • 2Lowen R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 1976, 56: 621-633.
  • 3Hutton B., Products of fuzzy topological spaces, Topology Appl., 1980, 11: 59-67.
  • 4Sostak A. P., On a fuzzy topological structure, Suppl. Rend. Circ. Mat Palermo Ser. Ⅱ, 1985, 11:89-103.
  • 5Chattopadhysy K. C., Hazra R. N., Samanta S. K., Gradation of opennes: fuzzy topology, Fuzzy Sets and Systems, 1992, 49: 237-242.
  • 6Ramadan A. A., Smooth topological spaces, Fuzzy Sets and Systems, 1992, 48: 371-375.
  • 7El Gayar M. K., Kerre E. E., Ramadan A. A., Almost compactness and Near compactness in smooth topological spaces, Fuzzy Sets and Systems, 1994, 62: 193-202.
  • 8Ying M. S., A new approach for fuzzy topology (Ⅰ), (Ⅱ), (Ⅲ), Fuzzy Sets and Systems, 1991, 39: 303-321; 1992, 47: 221-232; 1993, 55: 193-207.
  • 9Shen J. Z., Separation axiom in fuzzifying topology, Fuzzy Sets and Systems, 1993, 57:111-123.
  • 10Hohle U., Rodabaugh S. E. (Eds.), Mathematics of Fuzzy sets: logic, topology, and measure theory, the Handbooks of Fuzzy sets series, Vol 3, Boston, Dordrecht, London: Kluwer Academic Publishers, 1999.

共引文献18

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部