期刊文献+

基于内积和边界差的骨架结构提取 被引量:2

A Skeleton Extraction Framework Based on Inner Product and Border Gap
下载PDF
导出
摘要 为提高骨架提取算法的适用性,提出一种新型的骨架提取算法.通过对对象的边界元素按照空间距离顺序标号,求出对象内部像素的边界差,由边界差得到8连通的骨架分层.为提高算法的处理速度,提出前向分层和反向跟踪两个过程的骨架细化方法,用向量差Vd和长宽比(LWR)两个参数及支持向量机(SVM)分类器对冗余的骨架分支进行剪枝处理.试验结果表明,该算法提取的骨架具有很好的连通性,尤其适用于提取对象狭长区域的骨架线. A novel algorithm for skeleton extraction is proposed. By numbering object's border elements on spatial position, the border gap of inner pixel of the object is calculated, and an 8-connected medial- axis hierarchy is derived by the border gap, also a thinning method including slicing and counting is proposed to improve the processing speed. Branches with minor importance are truncated by vector divergence (Vd)and length-width ratio (LWR) with support vector machine (SVM) classifier. Experiments demonstrate that the derived skeletons have satisfying connectivity, especially in long and narrow area.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期207-213,共7页 Journal of Donghua University(Natural Science)
关键词 骨架 中轴 边界向量 边界差 支持向量机(SVM) 内积 距离变换 skeleton medial-axis border vector border gap support vector machine (SVM) inner product distance transform
  • 相关文献

参考文献15

  • 1BLUM H. A transformation for extracting new descriptors of shape[J]. Models for the Perception of Speech and Visual Form, 1967,19(5) :362-380.
  • 2GOH W B. Strategies for shape matching using skeletons [J]. Computer Vision and Image Understanding, 2008, 110 (3) :326-345.
  • 3BAI X, LIU W, TU Z. Integrating contour and skeleton for shape classification [ C ]// Proceedings of the IEEE International Conference on Computer Vision Workshops. Kyoto, 2009:360-367.
  • 4XIE J, HENG P A, SHAH M. Shape matching and modeling using skeletal context [J]. Pattern Recognition, 2008,41 ( 5 ) : 1756-1767.
  • 5LEYMARIEF, LEVINE M D. Simulating the grassfire transform using an active contour model [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(1): 56-75.
  • 6TANG Y Y. Skeletonization of ribbon-like shapes based on a new wavelet function [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 9 ) : 1118-1133.
  • 7OGNIEWICZ R L, KUBLER O. Hierarchic Vorouoi skeletons [J]. Pattern Recognition, 1995,28(3) : 343-359.
  • 8CHOI W P, LAM K M, SIU W C. Extraction of the Euclidean skeleton based on a connectivity criterion [ J ]. Pattern Recognition, 2003,36 (3) :721-729.
  • 9KHALID S, MAREK T, MARIUSZ R, et al. KaM: A universal algorithm for image skeletonization and a review of thinning techniques [J]. International Journal of Applied Mathematics and Computer Science,2010,20(2):317-335.
  • 10HASSOUNA M S, FARAG A A. On the extraction of curve skeletons using gradient vector flow [C]// Proceedings of the IEEE International Conference on Computer Vision. Rio de Janeiro, 2007 : 1-8.

同被引文献24

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部