期刊文献+

基于半方差函数的STARFM改进模型 被引量:8

Research of improved STARFM based on spatial structure variation
原文传递
导出
摘要 基于空间变异理论,本文提出了一种基于半方差函数的STARFM改进模型。该模型利用半方差函数分析基准Landsat影像的空间统计特性,确定影像各波段的空间相关距离——变程,然后将变程的2倍作为STARFM模型滑动窗口的宽度,预测了指定MDOIS时刻的Landsat影像;改变滑动窗口大小后的预测影像和实际观测影像各波段的平均绝对差值和平均差值均大于利用半方差函数确定滑动窗口宽度的预测影像,表明STARFM改进模型具有优越性。 Based on spatial variation theory, this paper put forward an improved STARFM algorithm. The variograms computed on all bands of the based Landsat was conducted, then the move window width was set to twice of this rang, finally the Landsat image at the specified MODIS time was predicted. Results showed that the average absolute difference and average difference between the pre- dicted and actual images are increased while the width of window changed, proving the improvement of this algorithm.
出处 《测绘科学》 CSCD 北大核心 2013年第3期140-142,92,共4页 Science of Surveying and Mapping
基金 “基于全球碳循环模拟下的北半球温带草原生态系统功能评价研究”(Y2ZZ19101B) 863重大项目“星机地立体组网协同观测关键技术”(2012AA12A301)
关键词 STARFM模型 空间变异 融合 半方差函数 STARFM spatial variation fusion variogram
  • 相关文献

参考文献11

  • 1Feng G, Jeff M, Matt S, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [ J ]. IEEE Transactions on Geoscience and Remote Sensing ,2006 ,dd ( 8 ) :2207-2218.
  • 2盖利亚,李巨芬,王宇.Landsat ETM数据在黄土丘陵区对浅层地下水信息的提取[J].测绘科学,2010,35(5):217-219. 被引量:5
  • 3Thomas H, Michael W, Nicholas C, et al. Generation of dense time series synthetic Landsat data through data hlending with MODIS using a spatial and temporal adap- tive reflectance fusion model[ J ]. Remote Sensing of En- vironment, 2009, 113(9): 1988-1999.
  • 4蒙继华,吴炳方,杜鑫,钮立明,张飞飞.高时空分辨率NDVI数据集构建方法[J].遥感学报,2011,15(1):44-59. 被引量:29
  • 5柳树福,熊隽,吴炳方.ETWatch中不同尺度蒸散融合方法[J].遥感学报,2011,15(2):255-269. 被引量:10
  • 6Thomas H, Michael W, Nicholas C, et al. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MO- DIS [ J ]. Remote Sensing of Environment, 2009, 113 (8).
  • 7Xiaolin Z, Jin C, Feng G, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions [ J ]. Remote Sensing of Environ- ment, 2010, 114( 11 ) : 2610-2623 : 1613-1627.
  • 8Woodcock C E, Strahler A H, Jupp D L B. The use of variograms in remote sensing: I. Scene models and simu- lated images [ J ]. Remote Sensing of Environment, 1988, 25 ( 3 ) : 323-348.
  • 9Woodcock C E, Strahler A H, Jupp D L B. The use of variograms in remote sensing: II. Real digital images [ J ]. Remote Sensing of Environment, 1988, 25 (3) : 349-379.
  • 10Garrigues S, Allard D, Baret F, et al. Quantifying spatial heterogeneity at the landscape scale using variogram mod- els [ J ]. Remote Sensing of Environment, 2006, 103 ( 1 ).

二级参考文献34

  • 1吴炳方,邵建华.遥感估算蒸腾蒸发量的时空尺度推演方法及应用[J].水利学报,2006,37(3):286-292. 被引量:37
  • 2姜立鹏,覃志豪,谢雯.MODIS数据地表温度反演分裂窗算法的IDL实现[J].测绘与空间地理信息,2006,29(3):114-117. 被引量:29
  • 3J Krishnamurthy, Srinivas G. Role of geological and geomorphological factors I ground water exploration: a study using IRS LISS data[J].International Journal of Remote Sensing, 1995, 16(14) .
  • 4候光才,张茂省,等.中国地质调查局专报-鄂尔多斯盆地地下水勘查研究[M].北京:地质出版社,2008-06.
  • 5Running S W, Justice C, Salomonson V, Hall D, Barker J, Kaufman Y, Strahler A, Huete A, Muller J P, Vanderbilt V, Wan Z M, Teillet P and Carneggie D. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. Interna- tional Journal of Remote Sensing, 15(17): 3587-3620.
  • 6Shevyrnogov A, Trefois P and Vysotskaya G. 2000. Multi-satellite data merge to combine NOAA AVHRR efficiency with Landsat-6 MSS spatial resolution to study vegetation dynamics Advances in Space Research, 26(7): 1131-1133.
  • 7Van Leeuwen W J D, Orr B J, Marsh S E and Herrmann S M. 2006. Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sensing of Environment, 100(1): 67-81.
  • 8Vermote E F, Tanr6 D, Deuze J L, Herman M, and Morcrette J, 1997. Second simulation of the satellite signal in the solar spectrum: An overview, IEEE Transactions on Geosciences. Remote Sensing, 35(3): 675-686.
  • 9Wulder M A,White J C, Goward S N, Masek J G, Irons J R, Herold M, Cohen W B, Loveland T R and Woodcock C E. 2008. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 112(3): 955-969.
  • 10Ackerman S, Strabala K, Menzel P, Frey R, Moeller C, Gumley L, Baum B, Seeman S W and Zhang H. 2002. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (Mod35), Version 4.0.

共引文献41

同被引文献96

引证文献8

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部