摘要
本文对凸二次规划提出了一种基于新的核函数的大步校正原始-对偶内点算法.这种核函数构造新的障碍函数不仅可以定义新的搜索方向,而且可以控制内迭代的过程,使得对凸二次规划提出的大步校正原始-对偶内点算法的多项式复杂性阶改善到O(槡n(logn)2log(n/ε)),优于基于经典对数障碍函数的相应算法的复杂性阶.
A primal-dual interior-point algorithm for convex quadratic programming(CQP) based on a new kernel function is presented. We use the kernel function to construct a new barrier function. It not only can difine a new search direction,but also can control the process of inner iteration. These properties enable to improve the polynomial complexity bound of a large-update primal-dual interior-point method for (CQP) to O(√n(logn)2log(n/ε)),which is better than the complexity bound of the corresponding algorithm based on the classical logarithmic barrier function.
出处
《三峡大学学报(自然科学版)》
CAS
2013年第2期100-103,共4页
Journal of China Three Gorges University:Natural Sciences
基金
湖北省自然科学基金项目(2008CDZ047)
关键词
凸二次规划
原始-对偶内点算法
核函数
大步校正方法
多项式复杂性
convex quadratic programming
primal-dual interior'point algorithm
kernel function
large- update method
polynomial complexity