期刊文献+

基于提升框架和微粒群优化神经网络的超声信号消噪技术

Denoising Techniques for Ultrasonic Signals Based on Lifting Scheme and PSO Optimized NN
下载PDF
导出
摘要 为消除超声无损检测中晶粒散射引起的相干噪声,提高超声无损检测(UNDT)与无损评价(UNDE)基础数据的信噪比(SNR),提出了一种基于微粒群(PSO)优化神经网络模式识别理论的超声信号消噪技术,利用提升框架对原始超声检测信号进行多分辨率分析,根据微粒群算法强大的全局最优化能力,确定径向基函数(RBF)神经网络的结构,并通过径向基函数神经网络所构成的信噪分离器对信号和噪声进行识别、分离来消除噪声。 To eliminate the coherent noise in ultrasonic nondestructive testing caused by the scattering improve the signal-to-noise ratio (SNR) of the basic data in ultrasonic nondestructive testing of grain, and (UNDT) and nondestructive evaluation (UNDE), This paper put forward a method based on particle swarm optimization (PSO) neural network pattern recognition theory of ultrasonic signal denoising technology, multi-resolution analyze the original ultrasonic detection signal by lifting scheme, determine the structure of radial basis function (RBF) neural network according to the powerful global optimization capability of particle swarm algorithm, eliminate noise on the signal and noise identification and separation by using signal-to-noise radial basis function neural network separator, obtain the high SNR of the ultrasonic echo signal. The experimental results show that, compared with the traditional split spectrum analysis method, this one improves the stability of the de-noising performance and enhance the signal-to-noise ratio of ultrasonic nondestructive testing.
出处 《装备制造技术》 2013年第5期23-26,共4页 Equipment Manufacturing Technology
关键词 超声无损检测 提升框架 微粒群 RBF神经网络 UNDT lifting scheme particle swarm RBF neural network
  • 相关文献

参考文献2

二级参考文献10

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 3SHANKAR P M, BENCHARIT U, BILGUTAY N M, et al. Grain noise suppression through bandpass filtering [J]. Materials Evaluation,1988, 46(7): 1 100-1 104.
  • 4CHEN J, SHI Y, SHI S. Noise analysis of digital ultrasonic nondestructive evaluation system[J]. The International Journal of Pressure Vessels and Piping, 1999, 76(9): 619-630.
  • 5GUSTAFSSON, MATS G, STEPINSKI T. Studies of split spectrum processing, optimal detection, and maximum likelihood amplitude estimation using a simple clutter model[J]. Ultrasonics, 1997, 35(1): 31-52.
  • 6DRAI R, BENAMMAR A, BENCHAALA A. Signal processing for the detection of multiple imperfection echoes drowned in the structural noise[J]. Ultrasonics, 2004, 42(9): 831-835.
  • 7NEWHAUSE V L, BILGUATY N M. Flaw-to-grain echo enhancement by split-spectrum processing[J]. Ultrasonics, 1982, 20(2): 59-68.
  • 8DAVID L, DONOHO. De-Noising by soft-thresholding [J]. IEEE Transactions On Imformation Technology, 1995, 41(3): 612-627.
  • 9VAPNIK V. The nature of statistical theory [M]. New York: Pinger Verlag, 1995.
  • 10杨克己,胡旭晓.基于神经网络的自适应裂谱分析方法[J].中国机械工程,2002,13(9):806-809. 被引量:4

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部