摘要
利用上下解方法和Schauder不动点定理,讨论了一类六阶两点边值问题x(6)(t)-f(t,x(t),x′(t),x″(t),x′″(t),x(4)(t),x(5)(t))=0,t∈(0,1)x(0)=x′(1)=x″(0)=x′″(1)=x(4)(0)=x(5)(1)=0,解的存在唯一性.
We use upper and lower solutions method and Schauder fixed theorem to study a sixed-order two-point boundary value problem {x(g)(t)-f(t,x(t),x'(t),x"(t),x'''(t),x(4)(t),x(5)(t))=0,t∈(0,1)x(0)=x'(1)=x"(0)=x'''(1)=x(4)(0)=x(5)(1)=0 and obtains the uniqueness of solutions.
出处
《广西民族大学学报(自然科学版)》
CAS
2013年第1期41-44,48,共5页
Journal of Guangxi Minzu University :Natural Science Edition
基金
广西教育厅科研资助项目(201012MS025)
广西壮族自治区研究生教育创新计划(201110602071M037)
关键词
边值问题
上下解
SCHAUDER不动点定理
boundary value problem
upper and lower solutions
Schauder fixed point theorem