期刊文献+

一类六阶两点边值问题解的存在唯一性

Two-point Boundary Value Problem
下载PDF
导出
摘要 利用上下解方法和Schauder不动点定理,讨论了一类六阶两点边值问题x(6)(t)-f(t,x(t),x′(t),x″(t),x′″(t),x(4)(t),x(5)(t))=0,t∈(0,1)x(0)=x′(1)=x″(0)=x′″(1)=x(4)(0)=x(5)(1)=0,解的存在唯一性. We use upper and lower solutions method and Schauder fixed theorem to study a sixed-order two-point boundary value problem {x(g)(t)-f(t,x(t),x'(t),x"(t),x'''(t),x(4)(t),x(5)(t))=0,t∈(0,1)x(0)=x'(1)=x"(0)=x'''(1)=x(4)(0)=x(5)(1)=0 and obtains the uniqueness of solutions.
出处 《广西民族大学学报(自然科学版)》 CAS 2013年第1期41-44,48,共5页 Journal of Guangxi Minzu University :Natural Science Edition
基金 广西教育厅科研资助项目(201012MS025) 广西壮族自治区研究生教育创新计划(201110602071M037)
关键词 边值问题 上下解 SCHAUDER不动点定理 boundary value problem upper and lower solutions Schauder fixed point theorem
  • 相关文献

参考文献7

  • 1封汉颍.刘秀君,葛谓高.张恭庆,若干微分方程的可解性研究[D].北京:北京理工大学,2008.
  • 2刘秀君,江卫华,郭彦平.六阶边值问题的上下解方法[J].河北科技大学学报,2004,25(3):1-5. 被引量:1
  • 3非线性微分方程边值问题[M].北京:科学出版社,2007.
  • 4林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.
  • 5De- xiang, Ma,Xiao-zhong, Yang. Upper and lower solution method for fourth-order four-pointboundary value problems[J]. J. Comput. Appl. Math. ,2009 (223) :543-551.
  • 6Q. Zhang, S. Chen, J. Lia. Upper and lower solution method for fourth-order four-point boundary value problems[J]. J. Comput. Appl. Math. ,2006 (196) :387-393.
  • 7Agarwal R P. Boundary Value Problems for Higher Order Differential Equations[M]. World Scientific, Singapore, 1986.

二级参考文献12

  • 1AFTABIZADE A R.Existence and Uniqueness Theorems for Fourth-order Boundary Value Problems[J].J Math Anal Appl,1986,116:415-426.
  • 2COSTER C D,FABRY C,MUNYOMARERE F.Nonresonance Conditions for Fourth-order Nonlinear Boundary Problems[J].Internat J Math Sci,1994,17:725-740.
  • 3PIN MAD,MANASEVICH R F.Existence for a Fourth-order Boundary Value Problem Under a Two Parameter Nonresonance Condition[J].Proc Amer Math Soc,1991,112:81-86.
  • 4GUPTA C P.Existence and Uniqueness Theorem for a Bending of an Elastic Beam Equation[J].Appl Anal,1988,26:289-304.
  • 5USMANI R A.A Uniqueness Theorem for a Boundary Value Problem[J].Proc Amer Math Soc,1979,77:327-335.
  • 6AGARWAL R.On Fourth-order Boundary Value Problems Arising in Beam Analysis[J].Differntial Integral Equation,1989,2:91-110.
  • 7CABADA A.The Method of Lower and Upper Solutions for Second,Third,Fourth and Higher Order Boundary Value Problems[J].J Math Anal Appl,1994,185:302-320.
  • 8COSTER C D,SANCHEZ L.Upper and Lower Solutions,Ambrosetti-prodi Problem and Positive Solutions for Fourth-order O.D.E.[J].Riv Mat Pura Appl,1994,14:1 129-1 138.
  • 9KORMAN P.A Maximum Principle for Fourth-order Ordinary Differential Equations[J].Appl Anal,1989,33:267-273.
  • 10SCHRODER J.Fourth-order two-point Boundary Value Problems[J].Nonlinear Anal,1984,8:107-114.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部