期刊文献+

基于熵和局部邻域信息的高斯约束CV模型 被引量:8

Gaussian Regularizing CV Model Based on Entropy and Local Neighborhood Information
下载PDF
导出
摘要 基于曲线演化的Chan-Vese(CV)模型常常不能准确分割非均匀性且结构复杂的医学图像.针对此缺点,文中提出了一种基于熵和局部邻域信息的高斯约束CV模型,作者利用熵构造内部和外部区域能量的权值系数,加强了对曲线演化的控制;同时将曲线上各点的局部邻域信息引入到曲线演化过程中,提高了分割的准确性,并降低了区域内灰度不均匀等因素对曲线演化的影响;高斯约束保证了曲线演化过程中的稳定性、光滑性,同时不需要曲线周长约束项和重复初始化.利用Circular Hough变换对左心室壁内、外膜进行初始定位,避免了人工设置初始轮廓,减少了曲线向目标轮廓演化时间和初始轮廓位置敏感性对分割结果的影响.作者对心脏MR图像的左心室内、外膜进行了分割.结果表明文中方法能够快速准确地分割左心室壁内、外膜,抗干扰能力强,鲁棒性好. Due to the heterogeneous and complex constructions in medical images, the Chan-Vese (CV) model cannot achieve satisfying segmentation. We propose a novel Gaussian regularizing CV model using entropy and local neighborhood information. In the cost function of this model, the interior and exterior energies are weighted by the entropy, which improves the robust of the evolving curve. The local information of the curve is considered rather than global image statis- tics, which reduces the impact of the heterogeneous grays inside of regions and improves the seg- mentation results. The Gaussian kernel is utilized to regularize the level set function, which not only keeps the level set function smooth and stable, but also removes the traditional Euclidean length term and re-initialization. To reduce the sensitivity to the initialization, the Circular Hough transformation is used to obtain the initialization automatically. The encouraging results on the cardiac images indicate that the present method has the advantage of high accuracy and strong robustness to segment the endocardium and epicardium of the left ventricle.
出处 《计算机学报》 EI CSCD 北大核心 2013年第5期1076-1085,共10页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2010CB732500) 国家自然科学基金(31000450)资助~~
关键词 Chan-Vese(CV)模型 Circular HOUGH变换 邻域信息 高斯核函数 information Chan-Vese(CV) model Circular Hough transformation entropy local neighborhood Gaussian kernel function
  • 相关文献

参考文献16

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1987, 1(4): 321-331.
  • 2Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 226-280.
  • 3Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Com- munications on Pure and Applied Mathematics, 1989, 42(5): 577-685.
  • 4Cban T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2) : 266-277.
  • 5Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford Shah model. Interna- tional Journal of Computer Vision, 2002, 50(3) : 271-293.
  • 6Li C M, Kao C Y, Gore J G, Ding Z H. Implicit active con- tours driven by local binary fitting energy//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 1-7.
  • 7Duda R O, Hart P E. Use of the Hough transformation to detect lines and curves in picture. Communications of the ACM, 1972, 15(1): 11-15.
  • 8Albuquerque M P D, Esquef I A, Gesualdi A D R. Image thresholding using Tsallis entropy. Pattern Recognition Letters, 2004, 25(9): 1059-1065.
  • 9Lankton S, Tannenbaum A. Localizing region based active contours. IEEE Transactions on Image Processing, 2008, 17(11) : 2029-2039.
  • 10Peng D P, Merriman B, Osher S, Zhao H K, Kang M. A PDE-based fast local level set method. Journal of Computa- tional Physics, 1999, 155(2): 410-438.

同被引文献69

  • 1姜月秋,牛硕,高宏伟.一种新的基于K均值聚类的色彩量化算法研究[J].计算机科学,2012,39(S3):375-377. 被引量:6
  • 2李天庆,张毅,刘志,胡东成.Snake模型综述[J].计算机工程,2005,31(9):1-3. 被引量:47
  • 3陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54
  • 4Suzuki K, Kohlbrenner R, Epstein M L, et al. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms [J]. Medical Physics (S0094-2405), 2010, 37(5): 2159-2166.
  • 5Gletsos M, Mougiakakou S G, Matsopoulos G K, et al. A computer-aided diagnostic system to characterize CT focal liver lesions: Design and optimization of a neural network classifier [J]. IEEE Transactions on Information Technology in Biomedical (S1089-7771), 2003, 7(3): 153-162.
  • 6Feuerstein M, Mussack T, Heining S M, Navab N. Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection [J]. IEEE Transactions on Medical Imaging (S0278-0062), 2008, 27(3): 355-369.
  • 7Song X, Cheng M, Wang B, et aL Preoperative Planning for Liver Surgery based on CT Images [J]. Advances in lntbrmation Sciences and Service Sciences (S 1976-3700), 2012, 4( 11 ): 54-60.
  • 8Lee M, Cho W, Kim S, et al. Segmentation of interest region in medical volume images using geometric deformable model [J]. Computers in Biology and Medicine (S0010-4825), 2012, 42(5): 523-537.
  • 9Linguraru M G, Pura J A, Pamulapati V, Summers R M. Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT [J]. Medical Image Analysis (S 1361-8415), 2012, 16(4): 904-914.
  • 10Heimann T, van Ginneken B, Styner M A, et al. Comparison and evaluation of methods for liver segmentation fi-om CT datasets [J]. IEEE Transactions on Medical Imaging (S0278-0062), 2009, 28(8): 1251-1265.

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部