期刊文献+

两相图像变分分割凸松弛模型快速算法 被引量:1

Fast Algorithms for Two-Phase Image Variation Segmentation Based on Convex Relaxation Models
下载PDF
导出
摘要 主要研究两相图像分割凸模型的三类快速数值算法.首先,分别针对无约束和有约束的图像分割凸模型分别提出相应的具有O(1/k)阶收敛速率的梯度投影算法,并结合快速迭代收缩算法的加速收敛策略,将所提出的梯度投影算法的收敛速率从O(1/k)阶提高到O(1/k2)阶;其次,基于分块协调下降的思想,对无约束的图像分割凸模型采用Newton法求解,该算法不仅是单调下降的,而且具有二阶收敛性;然后,根据交互式迭代算法的思想,在约束模型的Fenchel原始-对偶形式的基础上,提出了一种通过原始变量和对偶变量交互式混合迭代求解的算法,所提出的算法在求解过程中避免了梯度算子和散度算子作用于未知变量,使得迭代形式更简单;最后,仿真实验表明了这3类算法的有效性和在收敛速率上的优势. This paper focuses on three fast numerical algorithms for two-phase convex variational image segmentation models. At first, two gradient projection algorithms are proposed separately for unconstrained and constrained convex image segmentation models, which converge as O(1/k). Combining the accelerating convergence strategy of the fast iterative shrinkage /thresholding algorithm, the convergence rate is improved from O(1/k) to O(1/k2). Next, a Newton method based on block coordinate descent is proposed for the unconstrained model, which is not only monotonically decreasing, but also converging quadratically. And then, a Primal-dual alternating iterative algorithm is applied to the constrained model, based on the Fenchel primal-dual formulation. It alternates between the primal and dual problems, and avoids the gradient operator and the diver- gence operator acting on unknowns. So, the iterative formula is more simple. At last, the validity and the advantages on convergence rate of all algorithms are illustrated by numerical examples.
出处 《计算机学报》 EI CSCD 北大核心 2013年第5期1086-1096,共11页 Chinese Journal of Computers
基金 国家"八六三"高技术研究发展计划子课题(2009AA012200) 湖北省自然科学基金科技计划项目(2011CDC143)资助~~
关键词 图像分割 凸松弛模型 梯度投影算法 分块协调下降 原始-对偶 image segmentation convex relaxation model gradient proiection algorithm block coordinate descent primal-dual
  • 相关文献

参考文献20

  • 1潘振宽,李华,魏伟波,郭振波,张春芬.三维图像多相分割的变分水平集方法[J].计算机学报,2009,32(12):2464-2474. 被引量:27
  • 2Caseltes V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1) : 61-79.
  • 3Mumford D, Shah J. Optimal approximations by pieeewise smooth functions and associated variational problems. Com- munications on Pure and Applied Mathematics, 1989, 42(5) : 577- 685.
  • 4Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 5Nikolova M, Esedoglu S, Chan T F. Algorithms for finding global minimizers of image segmentation and denoising mod- els. SIAM Journal on Applied Mathematics, 2006, 66 (5): 1632 -1648.
  • 6Berkels B. An unconstrained multiphase thresholding approach for image segmentation. Scale Space and Variation- al Methods in Computer Vision. Voss, Norway: Springer Berlin/Heidelberg, 2009:26-37.
  • 7Ekeland I, Teman R. Convex Analysis and Variational Prob- lems. Philadelphia: Society for Industrial and Applied Math- ematics Press, 1999.
  • 8Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 2004, 20(1).:89-97.
  • 9Aujol J F. Some first-order algorithms for total variation based image restoration. Journal of Mathematical Imaging and Vision, 2009, 34(3): 307-327.
  • 10Chambolle A, Darbon J. On total variation minimization and surface evolution using parametric maximum flows. Interna- tional Journal of Computer Vision, 2009, 84(3): 288-307.

二级参考文献25

  • 1陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割[J].计算机学报,2005,28(6):991-999. 被引量:9
  • 2周则明,王元全,王平安,夏德深.基于水平集的3D左心室表面重建[J].计算机研究与发展,2005,42(7):1173-1178. 被引量:8
  • 3Morigi S, Sgallari F. 3D long bone reconstruction based on level sets. Computerized Medical, Imaging and Graphics, 2004, 28(7): 377 -390.
  • 4Drapaca C S, Cardenas V, Studholme C. Segmentation of tissue boundary evolution from brain MR image sequences using multi-phase level sets. Computer Vision and Image Understanding, 2005, 100(3): 312- 329.
  • 5Sekkati H, Mitiche A. Joint optical flow estimation, segmentation, and 3D interpretation with level sets. Computer Vision and Image Understanding, 2006, 103(2): 89 -100.
  • 6Osher S, Sethian J. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton Jaeobi for mulation. Journal of Computational Physics, 1988, 79 ( 1 ) : 12- 49.
  • 7Zhao H K, Chan T, Merriman B, Osher S. A variational level set approach to multiphase motion. Journal of Computational Physics, 1996, 127(1): 179-195.
  • 8Osher S, Paragios N. Geometric Level set Methods in Imaging, Vision, and Graphics. New York: Springer-Verlag, 2003.
  • 9Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision, 2007, 72(2): 195-215.
  • 10Chan T, Vese L. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2) : 266-277.

共引文献26

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部