期刊文献+

GPU加速剂量计算中微分卷积/积分算法的实现 被引量:1

GPU-based ultra fast dose calculation using differential convolution/superposition algorithm
下载PDF
导出
摘要 微分卷积/积分算法是计算精度较高的光子线剂量计算算法,较长的计算时间限制了该算法在临床上的使用。本文对微分卷积/积分算法中最耗时的部分实现了基于GPU的并行化计算,与基于CPU的计算相比,在Tesla C1060上计算速度提高可达30X-60X。利用γ因子对计算结果的准确性进行了分析,结果显示,无论是均匀水模还是非均匀头模,在单照射野还是多照射野情况下,加速后的结果都与CPU的计算结果有相同的准确性。通过GPU并行加速,微分卷积/积分算法能成为日常的剂量计算算法。 Background: Dose calculation plays a key role in treatment planning for radiotherapy, its performance and accuracy are crucial to the quality of treatment plans. Differential convolution/superposition algorithm is considered as an accurate algorithm for photon dose calculation; however, improvement on its computational efficiency is still desirable for such purpose as real time treatment planning. Purpose: The goal of this work is to boost the performance of differential convolution/superposition algorithm by devising a graphics processing unit (GPU) implementation so as to make the method practical for daily usage. Methods: In this work, we implemented a GPU-based version of the differential convolution/superposition algorithm, by which the most time-consuming parts are implemented on GPU. In order to fully utilize the GPU computing power, the algorithm is modified to match the GPU hardware architecture. Results: Compared with the algorithm completely nmning on CPU, the GPU-based algorithm can speed up 30-60 times on a Tesla C1060 with higher values corresponding to larger field size. Finally, we use y index to analyze the accuracy of calculation results, no matter one field or multi-field, homogeneous phantom or inhomogeneous phantom, the GPU implementation has the same accuracy as the CPU implementation. Conclusions: GPU is a useful solution for satisfying the increasing demands on computation speed and accuracy of dose calculation. The GPU-based differential eonvolution/superposition can be feasible and cost-efficient for satisfying the increasing demands for either computation speed or accuracy by advanced radiation therapy technologies.
出处 《核技术》 CAS CSCD 北大核心 2013年第5期58-63,共6页 Nuclear Techniques
基金 国家科技支撑计划(2011BAII2B00)资助
关键词 CUDA 微分卷积 积分算法 GPU 剂量计算 CUDA, Differential convolution/superposition algorithm, GPU, Dose calculation
  • 相关文献

参考文献11

  • 1Pratx G, Xing L. GPU computing in medical physics: A review[J]. Medical Physics, 2011, 38:2685-2697.
  • 2Ahnesjo A, Aspradakis M M. Dose calculations for external photon beams in radiotherapy[J]. Physics in Medicine and Biology, 1999, 44(11): R99-155.
  • 3Spezi E, Lewis G. An overview of Monte Carlo treatment planning for radiotherapy[J]. Radiation Protection Dosimetry, 2008, 131(1): 123-129.
  • 4Mohan R, Chui C, Lidofsky L. Differential pencil beam dose computation model for photons[J]. Medical Physics, 1986, 13(1): 64-73.
  • 5Mohan R, Chui C. Use of fast Fourier transforms in calculating dose distributions for irregularly shaped fields for three-dimensional treatment planning[J]. Medical Physics, 1987, 14(1): 70-77.
  • 6Bourland J D, Chaney E L. A finite-size pencil beam model for photon dose calculations in three dimensions[J]. Medical Physics, 1992, 19(6): 1401-1412.
  • 7Knoos T, Ahnesjo A, Nilsson P, et al. Limitations of a pencil beam approach to photon dose calculations in lung tissue[J]. Physics in Medicine and Biology, 1995, 40: 1411.
  • 8Vanderstraeten B, Reynaert N, Paelinck L, et al. Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations[J]. Medical Physics, 2006, 33:3149-3158.
  • 9Owens J D, Houston M, Luebke D, et al. GPU computing[J]. P Ieee, 2008, 96(5): 879-899.
  • 10Corporation N. NVIDIA CUDA Programming Guide. In: Corporation. N, ed. 3.0 ed2010: https://developer.nvidia.com.

二级参考文献12

  • 1戴建荣,胡逸民,张红志,关莹,张可,王闯.针对患者调强放射治疗计划的剂量学验证[J].中华放射肿瘤学杂志,2004,13(3):229-233. 被引量:65
  • 2GERSHKEVITSH E, SCHMIDT R, VELEZ G, et al. Dosimetric verification of radiotherapy treatment planning systems: results of IAEA pilot study[J].Radiother Oneol, 2008, 89(3) : 338-346.
  • 3YAMAMOTO T, MIZOWAKI T, MIYABE Y, et al. An integrated monte carlo dosimetric verification system for radiotherapy treatment planning[J]. Phys Med Biol, 2007, 52 (7) : 1991-2008.
  • 4LOW D A, HARMS W B, MUTIC S, et al. A technique for the quantitative evaluation of dose distributions [J]. Med Phys, 1998, 25(5): 656-661.
  • 5WENDLING M, ZIJP L J, MCDERMOTT L N, et al. A fast algorithm for gamma evaluation in 3D[J]. Mcd Phys, 2007, 34(5) : 1647-1654.
  • 6JU T, SIMPSON T, DEASY J O, et al. Geometric interpretation of the gamma dose distribution comparison technique: interpolation-free calculation[J]. Med Phys, 2008, 35 (3): 879-887.
  • 7NVIDIA. CUDA^TM. NVIDIA CUDA C Programming Guide Version 4.2[EB/OL]. (2012-04-16) [2012-04-28]. http: developer, download, nvidia, com/compute/DevZone/docs/html/C/doc/CUDA C Programming Guide. pdf.
  • 8MEN C H, GU X J, CHOI D, et al. GPU-based ultrafast IMRT plan optimization[J]. Phys Med Biol, 2009, 54(21): 6565-6573.
  • 9SHARP G C, KANDASAMY N, SINGH H, et al. GPU- based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration [J ]. Phys Med Blot,2007, 52 (19): 5771-5783.
  • 10MACKIE T R, SCRIMGER J W, BATTISTA J J. A convolution method of calculating dose for 15-MV X rays[J]. Med Phys, 1985, 12(2): 188-196.

共引文献2

同被引文献19

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部