期刊文献+

改进的MCMC算法—DSY算法及其在估计IRT模型参数中的应用 被引量:4

Improvement of MCMC Algorithm-DSY Algorithm and its Application in Parameter Estimation under the IRT Model
下载PDF
导出
摘要 本文首先简要的阐述了MCMC算法的思想及在IRT参数估计中的操作过程;其次,针对该算法存在的一些问题,提出相应的改进建议;然后,分别运用传统的和改进的MCMC算法进行模拟数据分析和比较,结果显示新的方法表现更好;最后总结新方法的优点所在,并指出下一步的研究方向。 The core issue in IRT is how to estimate the item and person parameters. The common methods used often were the N - R algorithm and the E - M algorithm. Because of their special characteristics in themselves, there were always certain shortcomings to hinder their development. With more and more complex models appearing, it is also difficult to estimate the parameters using those methods. Then, the algorithm called Markov Chain Monte Carlo (MCMC) appeared. The emergence of MCMC algorithm provides the new solution. The MCMC algorithm has been used in statistical physics for more than 50 years. In recent 20 years, it was also widely used in Bayesian estimation, test of significance and maximum likelihood estimation. Albert (1992) is the first statistician to apply the algo-rithm in IRT parameter estimations. Many experts including Albert ( 1992), Patz and Junker ( 1999a, 1999b), Kim, Seon and Daniel, Bolt (2007) provide the information about the MCMC algorithm and how to use it in detail. The character of the MCMC algorithm is that it gives full play to the advantages of computer simulation technology, collects a suffi- ciently large sample of state by simulating, uses the elementary method to estimate the model parameters, and thus bypasses the complex calculation of the EM algorithm to improve the success rate of estimation. No algorithm is perfect. Although the traditional MCMC algorithm has been widely used, its shortcomings, such as the serious de- pendence on the prior distribution of the parameters and the extremely long time spent in performing the procedure, still exist. It is the main purpose of this paper to solve the problems. In the paper, the idea of the MCMC a/gorithm is briefly introduced. Then two suggestions are made to improve the algorithm and solve the existing problems. The first suggestion is about the stationary distribution: the traditional MCMC algorithm is largely dependent on the prior distribution of the model parameters. However, in practice, researchers often do not know the prior distribution. So this influences the accuracy of the estimation results. In this paper, we provide another method to avoid the above situation. The second suggestion is about the acceptance probability. In this paper, we believe that in order to reduce the run time of the procedure, only when the stationary distribution value of the new iteration value is greater than that of the original iteration value, does the new iteration value replace the old one to be the value of the iterative chain. Then, the traditional and improved versions of MCMC algorithm are used to simulate and analyze the data. Through the comparison of the results from the two methods, it shows that the new method performs better. Finally, the advantage of the new algorithm is pointed out and the future research direction is suggested.
出处 《心理科学》 CSSCI CSCD 北大核心 2013年第3期734-738,共5页 Journal of Psychological Science
关键词 项目反应理论 MCMC算法 DSY算法 参数估计 平稳分布 item response theory, MCMC algorithm, DSY algorithin parameter estimation, stationary distribution
  • 相关文献

参考文献10

  • 1龚光鲁,钱敏平.(2003).应用随机过程北京:清华大学出版社.
  • 2茆诗松,王靜龙,濮晓龙.高等数理统计(第二版).北京:高等教育出版社,2006.
  • 3涂冬波,漆书青,蔡艳,戴海琦,丁树良.IRT模型参数估计的新方法--MCMC算法[J].心理科学,2008,31(1):177-180. 被引量:18
  • 4王权.“马尔可夫链蒙特卡洛”(MCMC)方法在估计IRT模型参数中的应用[J].考试研究,2006,2(4):45-63. 被引量:14
  • 5曾莉,辛涛,张淑梅.2PL模型的两种马尔可夫蒙特卡洛缺失数据处理方法比较[J].心理学报,2009,41(3):276-282. 被引量:10
  • 6Albert, J. H. ( 1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling . Journal of Education Statistics, 17, 251 -269.
  • 7Jiang Y. L. (2005) . Estimating parameters for multidimensional item response theory models by MCMC methods. Unpublished Doctoral Dissertation ,Michigan State University.
  • 8Kim J, S, , & Daniel M. B. (2007 ). Estimating item response theory models using Markov Chain Monte Carlo Methods. Educational Measurement : Issues and Practice, 26(4),38 -51.
  • 9Richard,J. P.,& Bria, W. J. (1999a). A straightforward approach to Markov Chain Monte Carlo Methods for Item Response Models. Journal of Educational and Behaviorial Statistics, 24(2), 146 - 178.
  • 10Richard, J. P.,& Brian, W. J. (1999b). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behaviorial Statistics, 24(4),342.

二级参考文献25

  • 1Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251-269.
  • 2Huisman, M. (2000). Imputation of missing item responses: some simple techniques. Quality and Quantity, 34, 331-351.
  • 3Jones, D. H., & Nediak, M. (2000). Item parameter calibration of LSAT items using MCMC approximation of Bayes posterior distributions. Rutcor research report, 7-2000.
  • 4Karkee, T., & Finkelman, M. (2007, April). Missing Data treatment Methods in Parameter Recovery for a Mixed-Format Test. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  • 5利特尔,鲁宾.(2004).缺失数据统计分析.(孙山泽译). 北京:中国统计出版社.
  • 6Ludlow, L. H., & O’Leary M. (1999). Scoring omitted and not-reached items: practical data analysis implications. Educational and Psychological Measurement, 59, 615-630.
  • 7Maris, G., & Bechger, T. M. (2005). An introduction to the DA-T Gibbs sampler for the two-parameter logistic (2PL) model and beyond. Psicológica, 26, 327-352.
  • 8Muraki, E., & Bock, R. D. (1993). PARSCALE: IRT based test scoring and item analysis for graded open-ended exercises and performance tasks. Chicago: Scientific software Int.
  • 9Patz, R. J., & Junker, B. W. (1999a). A straightforward approach to markov chain monte carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146-178.
  • 10Patz, R. J., & Junker, B. W. (1999b). Applications and extensions of MCMC in IRT: multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342-366.

共引文献36

同被引文献26

  • 1曾秀芹,孟庆茂.项目功能差异及其检测方法[J].心理科学进展,1999,9(2):41-47. 被引量:27
  • 2徐轶元.关于DIF的一个简单LOG模型[J].心理发展与教育,1998,14(4):57-58. 被引量:2
  • 3董圣鸿,马世晔.三种常用DIF检测方法的比较研究[J].心理学探新,2001,21(1):43-48. 被引量:21
  • 4杜文久.(2014)高等项目反应理论.北京:科学出版社.
  • 5黄春霞.(2004).汉语水平考试(HsⅪ初中等1)试题中的DIF检验.龀京语言大学硕士学位论文.
  • 6王艳.(20061.基于贸目反应瑗趁的页目功能羞异橙验.北京语言大学硕士学位论文.
  • 7席梦婷.(2011).MIMlc、MH和LR方法在项目功能差异分析中的比较研究.江西师范大学硕士学位论文.
  • 8Holland, P. W., & Thayer, D. T. (1988). Differential item functioning and the Mantel-Haenszel procdeure. Paper presented at the American Educational Research Association Annual Meeting, San Francisco, California, USA.
  • 9Lord, F. M. (1976). A study of item bias using characteristic curve theory. New York: College Entrance Examination Board.
  • 10Lord, F. M. (1980). Applications of item response theory to practical testing problems. New York: Lawrence Edbaum Associates.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部