期刊文献+

褶皱发展对平面张拉薄膜屈曲后动力特性的影响 被引量:3

THE INFLUENCE OF WRINKLES ON VIBRATION OF BUCKLED TENSION PLANE MEMBRANE
原文传递
导出
摘要 剪切位移荷载作用下,平面张拉薄膜经历缺陷、临界褶皱和宏观褶皱3种状态。该文依次分别对处于3种状态的薄膜进行自振特性分析,并明确了3种状态的划分原则。计入平面张拉薄膜的微小抗弯刚度,采用ANSYS/LS-DYNA中显式-隐式连续求解的方法对屈曲后薄膜的动力特性进行分析。依据忽略面外变形的理想模型自振特性分析结果,把平面张拉薄膜的振型划分为贯通振型和间断振型,贯通振型又划分为纵向贯通振型和横向贯通振型。研究结果表明:薄膜处于缺陷状态时,面外变形对薄膜自振特性的影响可以完全忽略,受主应力分布的影响,低阶振型中纵向贯通振型更易于出现,纵向贯通振型的波峰或波谷数量随着频率阶数的递增而规律递增。临界褶皱状态,薄膜的各阶频率均随剪切位移的增加而出现大幅波动,面外变形对薄膜振型的影响逐渐增大,横向贯通振型消失,纵向贯通振型的递增规律逐渐破坏;宏观褶皱状态,薄膜的各阶频率趋于稳定,其主应力分布及振型受面外变形的影响显著。 Under a shearing displacement, the membrane experienced three states, defined as an imperfection state, a critical wrinkles state and a macro wrinkles state. The influences of wrinkles in different stages on the free vibration of a membrane were studied and the division principle of the three states was given more clearly. Considering the small bending rigidity of the tension plane membrane, the explicit-to-implicit sequential solution of ANSYS/LS-DYNA was adopted to analyze the dynamic characteristics of the post-buckling tension membrane. According to the analytical results of the ideal membrane, in which the out-plane deformation was ignored, its vibration modes could be divided into two types, through-vibration modes and local vibration modes. Through-vibration modes can be further divided into vertical-through vibration modes and horizontal-through vibration modes. The results show that, in the imperfection state, the effects of wrinkles on free vibration characteristics could be completely negligible. Affected by the distribution of the principal stress, the vertical-through vibration modes appear more easily in low order modes. Its peaks and troughs increase regularly with the increase of order. In the critical-wrinkle state, each frequency fluctuates wildly. The influence of wrinkles begins to be prominent, horizontal-through vibration modes disappear gradually, and the increasing law of vertical through vibration modes is destroyed. In the macro-wrinkle state, each frequency becomes stable. The out-of-plane deformation has great influences on the principal stress and modes.
出处 《工程力学》 EI CSCD 北大核心 2013年第5期207-214,220,共9页 Engineering Mechanics
基金 国家自然科学基金项目(51278049)
关键词 薄膜褶皱 非线性屈曲 平面张拉薄膜 初始缺陷 自振特性 membrane wrinkles nonlinear buckling tension plane membrane initial imperfections freevibration
  • 相关文献

参考文献18

  • 1李云良,田振辉,谭惠丰.屈曲薄膜振动分析[J].工程力学,2008,25(11):33-36. 被引量:5
  • 2谭惠丰,李云良.薄膜后屈曲振动行为分析[J].哈尔滨工业大学学报,2011,43(S1):61-65. 被引量:3
  • 3Tan Huifeng, Li Yunliang. Analysis of post-bucklingdynamic behavior of membrane [J]. Journal of HarbinInstitute of Technology, 2011, Sup43(l): 61-65.
  • 4Kukathasan S, Pellegrino S. Nonlinear vibration ofwrinkled membranes [C]. Norfolk, Virginia. Proceedingof the 44th AIAA SDM Conference. 7-10 April 2003,AIAA 2003-1747.
  • 5Hossain N M A. Wrinkles and gravity effects ontransverse vibration of membranes [C]. Austin, Texas.Proceeding of the 46th AIAA SDM Conference. 18-21April 2005,AIAA 2005-1978,.
  • 6马瑞,张建,杨庆山.基于薄壳单元的膜材褶皱发展过程研究[J].工程力学,2011,28(8):70-76. 被引量:6
  • 7Ala Tabiei, Romil Tanov. A nonlinear higher order sheardeformation shell element for dynamic explicit analysis:Part, formulation and finite element equations [J]. FiniteElements in Analysis and Design, 2000,36(1): 17-37.
  • 8泰德.彼莱奇科,廖荣锦,布莱恩.莫兰.连续体和结构的非线性有限元[M].庄茁,译.北京:清华大学出版社,2002: 126-128.
  • 9Ted Belytschko, Wing Kam Liu, Brian Moran. Nonlinearfinite elements for continual and structutrs [M].Transtated by Zhuangzhuo. Beijing: Tsinghua UniversityPress, 2002: 126-128.
  • 101991-2005, LS-DYNA theoretical manual [S]. LivermoreCalifornia. Livermore Software Technology Corportation.2005.

二级参考文献82

  • 1徐国宏,袁行飞,傅学怡,顾磊,董石麟.ETFE气枕结构设计——国家游泳中心气枕结构设计简介[J].土木工程学报,2005,38(4):66-72. 被引量:30
  • 2杜星文,王长国,万志敏.空间薄膜结构的褶皱研究进展[J].力学进展,2006,36(2):187-199. 被引量:15
  • 3谭锋,杨庆山,张建.薄膜结构褶皱分析的有限元法[J].工程力学,2006,23(A01):62-68. 被引量:12
  • 4Freeland R E, Bilyeu G D, Veal G R. Large inflatable deployable antenna flight experiment results [J]. Acta Astronautica, 1997, 41(4-10): 267-277.
  • 5Freeland R E, Bilyeu G D, Veal G R. Development of flight hardware for a large, inflatable-deployable antenna experiment [J]. Acta Astronautica, 1996, 38(4-8): 251 - 260.
  • 6Murphy D, Murphey T, Gierow P. Scalable solar-sail subsystem design concept [J]. AIAA Journal of Spacecraft and Rockets, 2003, 40(4): 539-547.
  • 7Grossman G, Williams G. Inflatable concentrators for solar propulsion and dynamic space power [J]. Journal of Solar Energy Engineering, 1990, 112(4): 229-236.
  • 8Akahoshi Y, Nakamura R, Tanaka M. Development of bumper shield using low density materials [J]. International Journal of Impact Engineering, 2001, 26(1-10): 13- 19.
  • 9Thomas W, Murphey, David M, Murphy. A method to quantify the thrust degradation effects of structural wrinkles in solar sails [C]. 43rd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference Online Proceedings. Denver, Colorado, 2002.
  • 10Hossain N M A, Jenkins C H. Transverse vibration analysis for partly wrinkled membranes [J]. Journal of Spacecraft and Rockets, 2006, 43(3): 626-637.

共引文献22

同被引文献28

  • 1光学薄膜参数测试[J].中国光学与应用光学,2007(1). 被引量:1
  • 2王长国,杜星文,万志敏.空间薄膜结构的褶皱形变预测[J].力学与实践,2006,28(6):37-41. 被引量:4
  • 3王长国,杜星文,万志敏.薄膜褶皱的非线性屈曲有限元分析[J].计算力学学报,2007,24(3):269-274. 被引量:11
  • 4Pimprikar NA,Banerjee B,Roy D. New computational approaches for wrinkled and slack membranes[J].{H}International Journal of Solids and Structures,2010,(47):2476-2486.
  • 5Gal E,Zelkha M,Levy R. A simple co-rotational geometrically non linear membrane finite element wrinkling analysis[J].{H}INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS,2011,(11):181-195.
  • 6Lecieux Y,Bouzidi R. Experimental analysis on membrane wrinkling under biaxial load-Comparison with bifurcation analysis[J].{H}International Journal of Solids and Structures,2010.2459-2475.
  • 7Wong YW. Analysis of wrinkle patterns in pre-stressed membrane structures[D].Cambridge,UK:University of Cambridge,Department of Engineering,2000.
  • 8Wong YW,Pellegrino S. New Approaches to Structural Mechanics,Shells and Biological Structures[M].{H}Dordrecht:Kluwer Academic Publishers,2002.257-270.
  • 9Wong YW,Pellegrino S. Computation of wrinkle amplitudes in thin membranes[A].2002.
  • 10Wong YW,Pellegrino S. Wrinkled membranes Ⅱ:Analysis[J].J of Mechanics of Materials and Structures,2006,(02):25-61.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部