期刊文献+

基于扩展有限元法的钢筋混凝土梁复合断裂过程模拟研究 被引量:20

SIMULATION OF MIXED-MODE FRACTURE PROCESS OF REINFORCED CONCRETE BEAM BASED ON EXTENDED FINITE ELEMENT METHOD
原文传递
导出
摘要 针对钢筋混凝土梁裂纹扩展问题,基于扩展有限元法,建立了预置裂纹的简支混凝土梁三维模型,用粘聚裂纹模型描述裂纹面间的力学行为,采用线性的软化曲线表示裂纹尖端断裂过程区的应变软化行为,分别对素混凝土梁和钢筋混凝土梁的复合断裂过程进行模拟,分析了纵向钢筋对裂纹扩展路径、荷载-挠度和荷载-CMOD(裂缝开口处张开位移)曲线的影响,并与文献中的试验结果进行对比,计算结果与试验结果吻合良好,展示了扩展有限元法在结构断裂破坏分析方面的独特优势。 To study the crack propagation of a reinforced concrete beam, a three-dimensional model of a simply supported concrete beam with an embedded crack was established. Based on the extended finite element method (XFEM), a cohesive crack model was used to describe the mechanical behavior of the crack surfaces. The stain softening behavior of a fracture process zone of the crack tip was represented by a linear softening curve. The mixed-mode fracture process of a plain concrete beam and reinforced concrete beam were simulated. The influences of longitudinal reinforcement on the crack propagation, load-deflection curve and Ioad-CMOD (Crack Mouth Opening Displacement) curve were analyzed. The numerical simulation results show a good agreement with the experiment results. The advantage of XFEM for the structural analysis of fracture failure was presented.
出处 《工程力学》 EI CSCD 北大核心 2013年第5期215-220,共6页 Engineering Mechanics
基金 国家自然科学基金项目(41172244 41072224) 教育部新世纪优秀人才计划项目(NCET-08-0662)
关键词 扩展有限元 复合断裂 数值模拟 钢筋混凝土梁 粘聚裂纹 XFEM mixed-mode fracture numerical simulation reinforced concrete beam cohesive crack
  • 相关文献

参考文献7

二级参考文献78

  • 1杨晓翔,范家齐,匡震邦.求解混合型裂纹应力强度因子的围线积分法[J].计算结构力学及其应用,1996,13(1):84-89. 被引量:23
  • 2周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(3):211-218. 被引量:38
  • 3方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型[J].清华大学学报(自然科学版),2007,47(3):344-347. 被引量:43
  • 4方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:66
  • 5[1]Hillerborg A,Modéer M,Peterson P E.Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cem.Concr.Res.,1976,6:773~782.
  • 6[2]Ba(z)ant Z P.Crack band model for fracture of geomaterials[C].Proc.4th Int.Conf.on Numerical Methods in Geomechanics,Z.Eisenstein,ed.,Univ.of Alberta,Edmonton,1982,3:1137~1152.
  • 7[3]Jirásek M,Zimmermann T.Embedded crack model:I.basic formulation[J].International Journal for Numerical Methods in Engineering,2001,50:1269~1290.
  • 8[4]Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].Int.J.Numer.Methods Engrg.,1999,45:601~620.
  • 9[5]Moёs N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131~150.
  • 10[6]Daux C,Moёs N,Dolbow J,Sukumar N,Belytschko T.Arbitrary branched and intersecting cracks with the extended finite element method[J].Int.J.Num.Methods in Eng.,2000,48:1741~1760.

共引文献289

同被引文献174

引证文献20

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部