期刊文献+

金属多面体上低剖面天线的矩量法分析 被引量:2

Analysis of low-profile antenna on a conducting polyhedron by MoM
下载PDF
导出
摘要 采用矩量法对任意形状导体上的低剖面天线进行了整体分析,其中,导体采用三角形面元矢量基函数、细线结构采用三角形基函数、线面连接处采用特殊的基函数,在处理积分奇异时,通过坐标变换、积分转化、降维处理实现了奇异积分的精确快速计算,以平板单极子天线为例,验证了该方法的有效性.利用该方法对金属立方体上的低剖面电小环天线特性进行了分析,得出的结论对设计复杂载体上低剖面天线或天线阵有一定的参考价值. Low-profile antenna on an arbitrarily conducting body are analyzed as a whole by the method of moment(MoM).The Rao-Wilton-Gisson(RWG) basis function and triangular basis function are chosen to discretizate the conducting body and thin wire,respectively,and a special basis function is used to represent the current on the wire/surface junctions.The coordinate transformations,integral transformations and dimensionality reduction are employed to achieve the precise and rapid calculation of the singular integral.The availability of the method is demonstrated by a monopole mounted at the square plate.Finally,low-profile ring antennas mounted on the conducting cube are studied and numerical results are valuable to the low-profile antenna or antenna array design on complex targets.
出处 《电波科学学报》 EI CSCD 北大核心 2013年第2期290-295,共6页 Chinese Journal of Radio Science
关键词 低剖面天线 积分奇异性 线面连接模型 矩量法 low-profile antenna integration singularity wire-to-surface mode method of moment
  • 相关文献

参考文献8

  • 1MITTRA R. Computer Techniques for Electromagnet-ics[M]. Oxford:Pergainon Press,1973.
  • 2SATO K, MATSUMOTO K,FUJIMOTO K,et al.Characteristics of planar inverted-F antenna on a rec-tangular conducting body [ J 3. Trans IECIE,1988 ,J71-B: 1237-1243.
  • 3HWU S U,WILTON D R. Electromagnetic Scatter-ing and Radiation by Arbitrary Configurations of Con-ducting Bodies and Wires[R]. Houston: Universityof Houston, 1987.
  • 4赵延文,聂在平,徐建华,武胜波.基于RWG基函数的伽略金法中奇异性积分的精确快速计算[J].电子学报,2005,33(6):1019-1023. 被引量:8
  • 5RAO S M, WILTON D R, GLISSON A W. Electro-magnetic scattering by surfaces of arbitrary shape[J],IEEE Trans Antennas and Propagat, 1982,30(3):409-418.
  • 6GRAGLIA R D. On the numerical integration of thelinear shape functions times the 3-D Green,s functionor its gradient on a plane triangle[J]. IEEE Trans An-tenna and Propagat, 1993, 41(10) : 1448-1455.
  • 7DUFFY M G. Quadrature over a pyramid or cube ofintegrands with a singularity at a vertex[J]. SIAM JNumer Anal, 1982,19(6): 1260-1262.
  • 8CHEW W C,JIN J M, MICHIELESSEN E,et al.Fast and Efficient Algorithms in Computational Elec-tromagnetics [M]. Boston: Artech House, 2001.

二级参考文献9

  • 1Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Trans Antennas and Propagat, 1982,30(3):409-418.
  • 2Wilton D R, Rao S M, Glisson A W, et al. Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains[J].IEEE Trans Antennas and Propagat, 1984,32(3):276-281.
  • 3Graglia R D. On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle[J].IEEE Tram Antennas and Propagat, 1993,41(10):1448-1455.
  • 4Duffy M G. Quadrature over a pyramid or cube of integrands with a singularity at a vertex [J]. SIAM J Numer Anal, 1982,19(6):1260-1262.
  • 5Chew W C, Jin J M, Michielssen E, Song J. Fast and Efficient Algorithms in Computational Electromagnetics [M]. Boston, MA: Artech House, 2001.
  • 6Pasi Y O, Matti T. Calculation of CF1E impedance matrix elements with RWG and n x RWG functions[J]. IEEE Trans Antennas and Propagat,2003,51(8):1837-1846.
  • 7Caorsi S, Moreno D, Sidoti F. Theoretical and numerical treatment of surface integrals involving the free-space Green's fimctions[J]. IEEE Trans Antennas and Propagat, 1993,41(9): 1296-1301.
  • 8Bemtsen J, Espelid T O. Algorithm 706. DCUTRI: an algorithm for adaptive cubature over a collection of triangles [J]. ACM Trarm Math Software, 1992,18(3):329-342.
  • 9Harrington R F. Field Computation by Moment Methods [M]. New York: Macmillan, 1968.

共引文献7

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部