摘要
本文研究了一类广义极大极小分式规划问题(P)。利用二阶(F,α,ρ,d)-I型函数和(F,α,ρ,θ)-d-V一致不变凸函数,引入了二阶(F,α,ρ,θ)伪拟d-V-I型一致不变凸函数和二阶(F,α,ρ,θ)严格伪拟d-V-I型一致不变凸函数的概念,并建立了该极大极小分式规划问题(P)的一个二阶对偶模型(D)。最后,在此二阶广义(F,α,ρ,θ)-d-V-I型一致不变凸性条件下,并利用函数F的次线性,得到了规划问题(P)和对偶问题(D)的弱对偶定理,强对偶定理和严格逆对偶定理。本文所得结果改进和推广了以前文献的一些相应结果。
In this paper, a class of generalized minimax fractional programming problem (P) is studied. Using second order (F, α,ρ , θ)-I type function and (F,α,ρ , θ) d-Vuinvex function, second order (F, α,ρ , θ) pseudo quasi d-V-I type univex function and second order (F, α,ρ , θ) strictly pseudo quasi d-V-1 type univex function are introduced and a second order dual model (D) of this minimax fractional programming problem (P) is formulated. Finally, under the second order generalized (F, α,ρ , θ)-d-V-I type univexity and using the sublinearity of function F, a weak duality theorem, a strong duality theorem and a strict converse duali- ty theorem between the programming problem (P) and the dual problem (D) are obtained. The results presented in this paper im- prove and extend some corresponding results in the previous literatures.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第3期1-4,共4页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.60974082)
重庆市教委科学研究项目(No.KJ121302
No.KJ131314)