期刊文献+

关于极大极小分式规划的一个二阶对偶 被引量:1

On a Second Order Dual for Minimax Fractional Programming
原文传递
导出
摘要 本文研究了一类广义极大极小分式规划问题(P)。利用二阶(F,α,ρ,d)-I型函数和(F,α,ρ,θ)-d-V一致不变凸函数,引入了二阶(F,α,ρ,θ)伪拟d-V-I型一致不变凸函数和二阶(F,α,ρ,θ)严格伪拟d-V-I型一致不变凸函数的概念,并建立了该极大极小分式规划问题(P)的一个二阶对偶模型(D)。最后,在此二阶广义(F,α,ρ,θ)-d-V-I型一致不变凸性条件下,并利用函数F的次线性,得到了规划问题(P)和对偶问题(D)的弱对偶定理,强对偶定理和严格逆对偶定理。本文所得结果改进和推广了以前文献的一些相应结果。 In this paper, a class of generalized minimax fractional programming problem (P) is studied. Using second order (F, α,ρ , θ)-I type function and (F,α,ρ , θ) d-Vuinvex function, second order (F, α,ρ , θ) pseudo quasi d-V-I type univex function and second order (F, α,ρ , θ) strictly pseudo quasi d-V-1 type univex function are introduced and a second order dual model (D) of this minimax fractional programming problem (P) is formulated. Finally, under the second order generalized (F, α,ρ , θ)-d-V-I type univexity and using the sublinearity of function F, a weak duality theorem, a strong duality theorem and a strict converse duali- ty theorem between the programming problem (P) and the dual problem (D) are obtained. The results presented in this paper im- prove and extend some corresponding results in the previous literatures.
作者 焦合华
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期1-4,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.60974082) 重庆市教委科学研究项目(No.KJ121302 No.KJ131314)
关键词 极大极小规划 分式规划 二阶对偶 广义(F α ρ θ)-d-V-I型一致不变凸 minimax programming fractional programming second order duality generalized (F, α,ρ , θ)-d-V-I type univexity
  • 相关文献

参考文献13

  • 1Yadav S R, Mukherjee R N. Duality for fractional minimax programming problems[J].J Aust Math Soc Ser B, 1990, 31(4) :484-492.
  • 2Chandra S, Kumar V. Duality in fractional minimax pro- gramming[J].J Aust Math Soc Ser A,1995,58(3):376- 386.
  • 3Liu J C,Wu C S. On minimax fractional optimality conditions with invexity[J]. J Math Anal Appl,1998,219(1) :21-35.
  • 4Ahmad I. Optimality conditions and duality in fractional minimax programming involving generalized vinvexity[J].Inter J Manag Syst,2003,19(1) :165-180.
  • 5Yang X M, Hou S H. On minimax fractional optimality and duality with generalized convexity[J]. J Glob Optim, 2005, 31 (2) : 235-252.
  • 6Mangasarian O L. Second and higher order duality in non- linear programming[J]. J Math Anal Appl, 1975,51 (3) : 607- 620.
  • 7Bector C R, Chandra S, Husain I. Second order duality for a minimax programming problem [J].Opsearch, 1991, 28 ( 2 ) : 249-263.
  • 8Liu J C. Second order duality for minimax programming [J]. Util Math,1999,56(1) :53-63.
  • 9Husain Z,Jayswal A, Ahmad I. Second order duality for non- differentiable minimax programming problems with generalized convexity[J].J Glob Optim,2009,44(4) :593-608.
  • 10Husain Z, Ahmad I, Sharma S. Second-order duality for minmax fractional programming[J].Optim Lett, 2009, 3(2) :277-286.

同被引文献12

  • 1Yadav S R, Mukherjee R N. Duality for fractional minimax programming problems[J]. J Aust Math Soc Set B, 1990, 31(4) :484-492.
  • 2Chandra S, Kumar V. Duality in fractional minimax pro- gramming[J]. J Aust Math Soc Ser A, 1995,58 (3) : 376- 386.
  • 3Liu J C,Wu C S, Sheu R L. Duality for fractional minimax programming[J]. Optim, 1997,41 (2) : 117-133.
  • 4Liu J C, Wu C S. On minimax fractional optimality condi- tions with invexity[J]. J Math Anal Appl, 1998,219 (1) : 21-35.
  • 5Liu J C,Wu C S. On minimax fractional optimality condi- tions with (F,p) convexity[J]. J Math Anal Appl, 1998, 219(1) :36-51.
  • 6Yang X M, Hou S H. On minimax fractional optimality and duality with generalized convexity[J]. J Glob Optim, 2005, 31 (2):235-252.
  • 7Bettor C R,Chandra S,Suneja S K,et al. Univex sets,func- tions and univex nonlinear programming[J]. Lecture Notes in Economies and Mathematical Systems, 1994,405 ( 1 ) : 3- 18.
  • 8Rueda N G, Hanson N G, Singh C. Optimality and duality with generalized convexity[J]. J Optim Theory Appl, 1995, 86(2):491-500.
  • 9Yuan D H, Liu X L,Chinehuluun A, et al. Nondifferentiable minimax fractional programming problems with (C,a,p, d)-convexity[J]. J Optim Theory Appl, 2006,129 ( 1 ) : 185- 199.
  • 10Long X J, Quan J. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity[J]. Numerical Algebra,Control and Optimality, 2011,1(3) :361-370.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部