期刊文献+

带有时滞的合作系统稳定性和Hopf分支分析(英文) 被引量:5

Stability and Hopf Bifurcation Analysis in a Mutualistic System with Delay
原文传递
导出
摘要 本文研究了带有时滞的两个物种的合作系统{x(t)=r1x(t)[1-a1x(t-τ)+a2y(t)]y(t)=r2y(t)[1+a3x(t)-a4y(t)]的稳定性和分支分析,通过分析特征根的分布得出系统在正平衡点(x*,y*),当τ=τ~时存在Hopf分支,进一步应用规范型和中心流形的方法给出了计算分支周期解稳定性和方向的计算公式,最后通过数值模拟验证了理论结果的正确性。 In this paper, a two-species Lotka-Volterra mutualistie system with delay (HL(1:1,ZAKx·(t)=r1x(t)[1-a1x(t-τ)+a2y(t)]Ky·(t)=r2y(t)[1+a3x(t)-a4y(t)]is considered. The existence of Hopf bifurcations at the positive equilibrium(x. ,y. ) when r=r, is established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived, by using the normal form theory and center manifold argu- ment. Finally, some numerical simulations are carried out for supporting the analytic results.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期55-58,共4页 Journal of Chongqing Normal University:Natural Science
基金 Scientific Research of College of Inner Mongolia(No.NJZZ11230)~~
关键词 合作系统 时滞 HOPF 分支 周期解 mutualistie system delay Hopf bifurcation periodic solutions
  • 相关文献

参考文献7

  • 1Song Y L,Wei J J. 1.ocal Hopf bifurcation and global exist- ence of periodic solutions in a delayed predator-prey system [J]. J Math Anal App,2005,301(1) :1-21.
  • 2Song Y L,Wei J J,Han M A. Local and global Hopf bifur- cation in a delayed hematopoliesis model[J]. International J Bifurcation and Chaos,2004,14(ll):3909 -3919.
  • 3Song Y L,Han M A,Peng Y H. Stability and Hopf bifurca- lion in a competition I.otka-Volterra system with two de- lays[J]. Chaos Solitons Fractals, 2004,22 ( 5 ) : 1139-1148.
  • 4Zhang J Z,Jin Z,Yan J R,et al, Stability and Hopf bifurca-tion in a delayed competition system[J].Nolinear Analy- sis, 2009,70(2):658-670.
  • 5Hassard B, Kazarinoff N, Wan Y. Theory and Applications of Hopf Bifur-cation[M]. Cambridge: Cambridge Univ Press, 1981.
  • 6Wei J J, Li M Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J]. Nonlinear Anal, 2005,60 (7):1351-1367.
  • 7Qu Y,Wei J .1. Bifurcation analysis in a timmdelay model for prey predator growth with stage-structure[J]. Nonlin ear Dynamics, 2007,49 ( 1-2 ) : 285-294.

同被引文献39

  • 1孙树林,原存德.捕食者有病的生态-流行病SIS模型的分析[J].工程数学学报,2005,22(1):30-34. 被引量:27
  • 2庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 3Gao S J, Chen L S, Teng Z D. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Anal:RWA,2008, 9 C 2) :599 - 607.
  • 4Hofbauer J, Sigmund K. Evolutionaly Games and Populatiion Dynamics[ M ]. Cambridge :Cambridge University, 1998.
  • 5Pei Y Z, Liu S Y, Gao S J, et al. A delayed SEIQR epidemic model with pulse vaccination and the quarantine measure [ J ]. Comput Math Appl,2009,58( 1 ) :135 - 145.
  • 6Zliang S W, Wang F Y, Chen L S. A food chain system with density - dependent birth rate and impulsive perturbations [ J l- Ady Complex Systems, 2006,9 (3) : 1 - 14.
  • 7Hethcote H, Ma Z E, Liao S B. Effects of quarantine in six endemic models for infectious diseases[ J ]. Math Biosciences,2002, 180(1/2) :141 - 160.
  • 8Donofrio A. Stability properties of pulse vaccination strategy, in SEIR epidemic model[ J]. Math Biosciences ,2002,179( 1 ) :57 -72.
  • 9Zhou Y C, Liu H W. Stability of periodic solution for an SIS model with pulse vaccination [ J ]. Math Comput Model, 2003, 38(3) :299 -308.
  • 10万阿英,魏俊杰.Hopf bifurcation analysis of a food-limited population model with delay,Nonlinear Ana-lysis: Real World Applications, Volume 11, Issue 2, April 2010, Pages 1087-1095.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部