摘要
本文研究了带有时滞的两个物种的合作系统{x(t)=r1x(t)[1-a1x(t-τ)+a2y(t)]y(t)=r2y(t)[1+a3x(t)-a4y(t)]的稳定性和分支分析,通过分析特征根的分布得出系统在正平衡点(x*,y*),当τ=τ~时存在Hopf分支,进一步应用规范型和中心流形的方法给出了计算分支周期解稳定性和方向的计算公式,最后通过数值模拟验证了理论结果的正确性。
In this paper, a two-species Lotka-Volterra mutualistie system with delay (HL(1:1,ZAKx·(t)=r1x(t)[1-a1x(t-τ)+a2y(t)]Ky·(t)=r2y(t)[1+a3x(t)-a4y(t)]is considered. The existence of Hopf bifurcations at the positive equilibrium(x. ,y. ) when r=r, is established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived, by using the normal form theory and center manifold argu- ment. Finally, some numerical simulations are carried out for supporting the analytic results.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第3期55-58,共4页
Journal of Chongqing Normal University:Natural Science
基金
Scientific Research of College of Inner Mongolia(No.NJZZ11230)~~
关键词
合作系统
时滞
HOPF
分支
周期解
mutualistie system
delay
Hopf bifurcation
periodic solutions