期刊文献+

运用代数法的事件驱动分子动力学模拟

An Algebraic Approach to Event-Driven Molecular Dynamics Simulation
下载PDF
导出
摘要 分子动力学模拟是随着计算机技术发展而兴起的一种科学计算方法,在基于事件驱动的椭球分子动力学模拟中碰撞检测是一个核心计算问题。为提高基于事件驱动的分子动力学模拟的效率,提出利用代数法计算椭球分子间的碰撞时间,通过椭球分子膨胀形成包围域,并使用代数法建立最近邻居列表。模拟实验结果表明,该算法的计算效率明显提高,特别是该算法不受椭球粒子长宽比的影响。 Molecular dynamics simulation is a scientific method of calculation with the development of computer technology. Collision detection is a basic computational problem arising in event-driven molecular dynamics simulation. In order to improve the computational efficiency of ellipsoid particles event-driven molecular dynamics simulation, this paper presents an algebraic approach to calculate particle collision time, expands ellipsoid particles to surround neighborhood, and uses algebraic approach to build the nearest neighbor list. The simulation results show that the algebraic approach offers a significant speedup over some methods, in particular it is independent on ellipsoid particle aspect ratio.
作者 刘彬 屠长河
出处 《计算机科学与探索》 CSCD 2013年第5期442-450,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61103096 60970046 山东省自然科学基金重点项目No.ZR2009GZ002~~
关键词 代数法 基于事件驱动分子动力学 碰撞检测 计算机模拟 algebraic approach event-driven molecular dynamics collision detection computer simulation
  • 相关文献

参考文献14

  • 1Rebertus D W, Sando K M. Molecular dynamics simulationof a fluid of hard spherocylinders[J]. Journal of ChemicalPhysics, 1977,67(6): 2585-2590.
  • 2Allen M, Frenkel D, Talbot J. Molecular dynamics simulationusing hard particles[J]. Computer Physics Reports, 1989, 9(6):301-353.
  • 3Lubachevsky B D. How to simulate billiards and simularsystems[J]. Journal of Computational Physics, 1991,94(2):255-283.
  • 4Allen M P. Diffusion coefficient increases with density inhard ellipsoid liquid crystals[J]. Physical Review Letters,1990,65(23): 2881-2884.
  • 5Donev A, Torquato S, Stillinger F H. Neighbor list collision-driven molecular dynamics simulation for nonsphericalhard particles: I algorithmic details[J]. Journal of Computa-tional Physics, 2005,202(2): 737-764.
  • 6Donev A, Torquato S, Stillinger F H. Neighbor list collision-driven molecular dynamics simulation for nonsphericalhard particles: II applications to ellipses and ellipsoids[J].Journal of Computational Physics, 2005,202(2): 765-793.
  • 7Perram J W, Wertheim M S. Statistical mechanics of hardellipsoids: I overlap algorithm and the contact function[J].Journal of Computational Physics, 1985, 58(3): 409-416.
  • 8Perram J W, Rasmussen J. Ellipsoid contact potential: theoryand relation to overlap potentials[J]. Physical Review E,1996,54(6): 6565-6572.
  • 9De Michele C, Sciortino F, Schilling R. Simulating hard rigidbodies[J]. Journal of Computational Physics, 2010, 229(9):3276-3294.
  • 10Cleary P W, Stokesand N, Hurley J. Efficient collision de-tection for three dimensional super ellipsoid particles[C]//Proceedings of the 8th International Computational Tech-niques and Applications Conference, 1997: 1-7.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部