期刊文献+

飞行器变后掠过程非定常气动特性形成机理 被引量:9

STUDY ON THE FORMATION MECHANISMS OF UNSTEADY AERODYNAMIC CHARACTERISTICS OF MORPHING FLIGHT VEHICLE IN SWEEP-VARYING PROCESS
下载PDF
导出
摘要 可变体飞行器变后掠过程中的时变气动力与力矩特性对于飞行安全具有重要意义,是亟待深入研究的基础问题.通过风洞实验对其开展了研究,揭示了可变体飞行器变后掠引起的气动特性动态迟滞现象及滞回环大小与方向的影响因素.基于风洞实验结果和力学中一些重要概念,提出了3种物理效应:流场迟滞效应、附加运动效应、固壁牵连效应,以此定性与定量论证了可变体飞行器变后掠过程中非定常气动特性的形成机理.除了能解释实验现象,这一机理研究亦可用于后续可变体飞行器变后掠过程中的气动特性建模. Time-dependent aerodynamic forces and moments of morphing aircraft during sweep-varying process are important to flight safety, and hence need thorough investigations. This paper conducted a wind tunnel experiment of morphing aircraft and analyzed the aerodynamic characteristics. The results demonstrate the dynamic hysteresis caused by sweep-varying, and various factors that affect the magnitude and director of hysteresis loop. Based on these results and some important concepts in mechanics, three physical effects, i.e., flow-field hysteresis effect, additional motion effect and wall implication effect, were proposed in order to interpret the formation mechanisms of the unsteady aerodynamic characteristics of morphing aircraft. This investigation about mechanisms can be used to further study on modeling of aerodynamic characteristics.
出处 《力学学报》 EI CSCD 北大核心 2013年第3期307-313,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(90816026)~~
关键词 可变体飞行器 变后掠 非定常气动特性 流场迟滞 附加运动 固壁牵连 morphing flight vehicle, variable sweep, unsteady aerodynamic characteristics, flow-field hysteresis, addi-tional motion, wall implication
  • 相关文献

参考文献31

  • 1Lentink D, M/iller UK, Stamhuis EJ, et al. How swifts con- trol their glide performance with morphing wings. Nature, 2007, 446(7139): 1082-1085.
  • 2Henningsson E Spedding GR, Hedenstr6m A. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. The Journal of Experimental Biology, 2008, 211(5): 717-730.
  • 3Hedenstrm A, Johansson LC, Wolf M, et al. Bat flight generates complex aerodynamic tracks. Science, 2007, 316(5826): 894-897.
  • 4Wolf M, Johansson LC, von Busse R, et al. Kinematics of flight and the relationship to the vortex wake of a Pallas'long tongued bat (Glosso-phaga soricina). The Journal of Experimental Biology, 2010, 213(12): 2142-2153.
  • 5Weisshaar T. Morphing aircraft technology -- new shapes for air- craft Design. In: Meeting Proceedings RTO-MP-AVT-141, Neuilly- sur-Seine, France: RTO, 2006: 2011-1-11-20.
  • 6Clery D. Aircraft designers shoot for savings on the wing. Science, 2009, 325(5942): 810.
  • 7Secanell M, Suleman A, Gamboa P. Design of a morphing airfoil us-ing aerodynamic shape optimization. AIAA Journal, 2006, 44(7): 1550-1562.
  • 8Gamboa P, Vale J, Lau FJP, et al. Optimization of a morphing wing based on coupled aerodynamic and structural constraints. AIAA Journal, 2009, 47(9): 2087-2103.
  • 9Namgoong H, Crossley WA, Lyrintzis AS. Aerodynamic optimiza- tion of a morphing airfoil using energy as an objective. AIAA Jour- nal, 2007, 45(9): 2113-2124.
  • 10Maute K, Reich GW. Integrated multidisciplinary topology opti- mization approach to adaptive wing design. Journal of Aircraft, 2006, 43(1): 253-263.

二级参考文献106

  • 1LENTINK D, MULLER U K, STAMHUIS E J, DE KAT R, VAN GESTEL W, VELDHUIS L L M, HENNINGSSON P, HEDENSTROM A, VIDELER J J, VAN LEEUWEN J L. How swifts control their glide performance with morphing wings[J]. Nature, 2007, 446(7139) : 1082-1085.
  • 2ANDERSEN G, COWAN D, PIATAK D. Aeroelastic modeling, analysis and testing of a morphing wing strueture[R]. AIAA Paper, AIAA-2007-1734, 2007.
  • 3LOVE M, ZINK P, STROUD R, BYE D, RIZK S, WHITE D. Demonstration of morphing technology through ground and wind tunnel tests[R]. AIAA Paper [R]. AIAA-2007-1729, 2007.
  • 4HALL J M. Executive summary AFTI/F-111 mission adaptive wing[R]. WRDC-TR-89-3083, 1989.
  • 5PENDLETON E, FLICK P, PAUL D, VORACEK D, REICHENBACH E, GRIFFIN K. The X-53 a summaryof the active aeroelastic wing flight research program [R]. AIAA Paper, AIAA-2007-1855, 2007.
  • 6KUDVA J. Overview of the DARPA smart wing project [J]. Journal of Intelligent Material System and Structure, 2004, 15: 261-267.
  • 7MCGOWAN A-M R, COX D E, LAZOS B S, WASZAK M R, RANEY D L, SIOCHI E J, PAO P S. Biologicallyinspired technologies in NASA's morphing project[A]. Proceedings of SPIE-The International Society for Optical Engineering[C]. 2003, 5051: 1-13.
  • 8SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9) : 2281-2297.
  • 9MCMANUS K, JOSHI P B, LEGNER H H, DAVIS S J. Active control of aerodynamic stall using pulsed jet actuators[R]. AIAA Paper, AIAA-95-2187, 1995.
  • 10CHEN F J, BEELER G B. Virtual shaping of a two-dimensional NACA 0015 airfoil using synthetic jet actuator[R]. AIAA Paper, AIAA-2002-3273, 2002.

共引文献87

同被引文献124

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部