期刊文献+

基于中间变量的乘子法

Multiplier method based on intermediate variables
下载PDF
导出
摘要 为了更有效地用乘子法求解结构优化问题,将倒变量和混合变量这两种中间变量引入乘子法,提出了基于中间变量的乘子法。在这种新方法中,基于增广拉格朗日函数的无约束子问题的构造和求解,以及算法的迭代和收敛,都是对中间变量进行的。只有目标函数与约束函数的函数值及梯度值的求取,是对原变量进行的。用两个具有较高非线性的工程算例对新方法进行测试,测试结果表明新方法具有良好的收敛性,且比一般的乘子法的收敛速度更快。 In order to use multiplier method to solve structural optimization problem more effectively, two kinds of intermediate variables, reciprocal variable and mixed variable, are introduced into multiplier method, and a new multiplier method based on intermediate variables is proposed. In the new method, the construction and solution of the unconstrained subproblem based on augmented Lagrange function, and the iteration and convergence of the arithmetic are all in line with intermediate variables. Only the value and gradient of objective function and constraint functions are achieved in line with original variables. Two simulation examples with high nonlinearity are adopted to test the new method, and the results show that the new method has good conver- gence and has faster convergence speed than common multiplier method.
作者 李亮 孙秦
出处 《计算机工程与应用》 CSCD 2013年第11期27-30,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.11272259)
关键词 乘子法 中间变量 倒变量 混合变量 结构优化 multiplier method intermediate variable reciprocal variable mixed variable structural optimization
  • 相关文献

参考文献15

  • 1Powell M J D.A method for nonlinear constraints in minimiza- tion problems[M].New York:Academic Press,1969:283-298.
  • 2Hestenes M R.Multiplier and gradient methods[J].Journal of Optimization Theory and Applications, 1969,4:303-320.
  • 3Rockafellar R T.Augmented Lagrange multiplier functions and duality in nonconver programming[J].SIAM Journal on Con- trol, 1974, 12:268-285.
  • 4Bertsekas D P.Constrained optimization and lagrange multiplier methods[M].New York:Academic Press, 1982: 104-205.
  • 5Nocedal J,Wright S J.Numerical optimization[M].New York: Springer-Verlag, 1999 ~ 511-520.
  • 6Venkayya V B.Structural optimization: a review and some recomm-endations[J].International Journal for Numerical Methods in Engineering, 1978,13 : 203-228.
  • 7Vanderplaats G N.Structural design optimization status and directon[J].AIAA Joumal, 1999,36: 11-20.
  • 8Schmit L A, Farshi B.Some approximation concepts for struc- tural synthesis[J].AIAA Journal, 1974,12 : 692-699.
  • 9Fleury C.Structural optimization: a new dual method using mixed variables[J].International Journal for Numerical Methods in Engineer, 1986,23 : 409-428.
  • 10Wei Z X,Li G Y,Qi L Q.New quasi-Newton methods for unconstrained optimization[J].Applied Mathematics and Com- putation, 2006,175 : 1156-1188.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部