期刊文献+

支持向量分类机在入侵检测中的应用研究 被引量:3

Research of support vector machine classifiers for intrusion detection
下载PDF
导出
摘要 为解决入侵检测系统的泛化能力问题,分析了多类分类器的理论框架,并综合考虑训练集数据的预处理、交叉验证时间和入侵检测模型准确率三个因素,提出了一种改进的粗细网格参数优化算法。在基于支持向量机的入侵检测模型中,将KDD数据集映射到高维空间,并采用不同的算法对核函数相关参数进行优化。实例仿真计算表明,通过改进的网格搜索法所获得的参数相对来说有明显的时间优势,分类精度和效率得到了提高。 To enhance the approximation and generalization ability of intrusion detection system, theoretical framework of mul- tiple classifiers is analyzed, and factors such as training data pretreatment, cross-validation time and intrusion detection model accuracy is also taken into consideration. In order to get optimal parameters rapidly, a new approach based on grid search is pre- sented. The KDD dataset is mapped into a high-dimensional feature space via the method for intrusion detection based on sup- port vector machine. Different algorithms are applied to optimize the related parameters for kernel function. By using improved grid search method, the acquired parameter has relatively obvious time Superiority. The experimental results prove that the classi- fication accuracy and efficiency are imnroved.
作者 雷向宇 周萍
出处 《计算机工程与应用》 CSCD 2013年第11期88-91,104,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60961002)
关键词 入侵检测系统 KDD数据集 支持向量机 核函数 网格搜索 intrusion detection system KDD dataset support vector machine kemel function grid search
  • 相关文献

参考文献15

  • 1Macia-Perez F, Mora-Gimeno F, Marcos-Jorquera D, et al. Network intrusion detection system embedded on a smart sensor[J].IEEE Transactions on Industrial Electronics, 2011, 58:722-732.
  • 2Rehak M, Pechoucek M, Grill M, et al.Adaptive multiagent system for network traffic monitoring[J].Intelligent Systems, 2009,24:16-25.
  • 3Gong Yunlu, Mabu S, Chen Ci, et al.Intrusion detection system combining misuse detection and anomaly detection using genetic network programming[C]//ICCAS-SICE, 2009: 3463-3467.
  • 4Qian Yuwen, Song Huaju, Gao Hua.Intrusion detection based on support vector machine divided up by clusters[C]//2010 International Conference on Electrical and Control Engineer- ing(ICECE) ,2010:2813-2815.
  • 5Liu Hui, Cao ~onghui.Research intrusion detection tech- niques from the perspective of machine learning[C]//2010 2nd International Conference on Multimedia and Informa- tion Technology(MMIT) ,2010:166-168.
  • 6Liang Xun, Chen Rong-Chang, Guo Xinyu.Pruning support vector machines without altering performances[J].IEEE Trans- actions on Neural Networks, 2008,19 : 1792-1803.
  • 7Melgani F, Bazi Y.Classification of electrocardiogram sig- nals with support vector machines and particle swarm opti- mization[J].IEEE Transactions on Information Technology in Biomedicine, 2008,12 : 667-677.
  • 8Cao Lijia, Zhang Shengxiu, Li Xiaofeng, et al.Nonlinear adap- tive block backstepping control using command filter and neural networks approximation[J].Information Technology Jour- nal, 2011,10 : 2284-2291.
  • 9Camps-Vails G, Gomez-Chova L, Munoz-Mari J.Kemel-based framework for multitemporal and multisource remote sens- ing data classification and change detection[J].IEEE Trans- actions on Geoscience and Remote Sensing, 2008,46: 1822-1835.
  • 10Wang Jun, Li Taihang, Ren Rongrong.A real time IDSs based on artificial bee colony-support vector machine algorithmiC]// 2010 3rd International Workshop on Advanced Computa- tional Intelligenee(IWACI), 2010: 91-96.

二级参考文献9

  • 1陈虎虎,钟方平,许学忠,董明荣.基于支持向量机的低空飞行目标声识别[J].系统工程与电子技术,2005,27(1):46-48. 被引量:11
  • 2林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 3王睿.关于支持向量机参数选择方法分析[J].重庆师范大学学报(自然科学版),2007,24(2):36-38. 被引量:39
  • 4孙继祥.现代模式识别[M].长沙:国防科技大学出版社,2002.
  • 5Vapnik V N. The nature of statistical learning theory[M].New York: Springer Verlag, 1995.
  • 6Chapelle O, Vapnik V. Choosing multiple parameters for support vector machines[J].Machine learning, 2002, 46 (1/2/3) : 131-159.
  • 7Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989,11 (7) : 674-693.
  • 8Buges,C J C. A tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery, 1998,2(2) : 121-167.
  • 9WU Kuoping, WANG Shengde. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space[J]. Pattern Recognition, 2009,42(5) : 710-717.

共引文献6

同被引文献24

  • 1张义荣,鲜明,肖顺平,王国玉.一种基于粗糙集属性约简的支持向量异常入侵检测方法[J].计算机科学,2006,33(6):64-68. 被引量:20
  • 2刘其琛,施荣华,王国才,等.基于粗糙集与改进LSSVM的入侵检测算法研究[J].计算机工程与应用,2012,48(8):48-52.
  • 3Meng Z Q,Shi Z Z.A fast approach to attribute reduc- tion in incomplete decision systems with tolerance rela- tion based rough sets[J].Informstion Sciences, 2009, 17(16) : 2774-2793.
  • 4Hu Q H,Yu D R, Liu J F,et al.Neighborhood rough set based heterogeneous feature subset selection[J].Infor- mation Sciences,2008, 178(18) : 3577-3594.
  • 5Breiman L.Bagging Predictors[J].Machine Learning, 1996, 24(2) : 123-140.
  • 6Kuncheva L I.Combining pattern Classifiers:Methods and Algorithms [M].USA: John Wiley&Sons.Inc, 2004 : 33-34.
  • 7张莹,顾必冲.基于Intemet网的XML电子数据交换研究(英文)[A].Proceedings of the dth International Conference on Material Handling & Logistics Systems[C].2002.
  • 8Kirnelleld, B, Kosharovski, Y, Sagiv, Y. Query efficiency in proba- bilistic XMLmodels. Proceedings of the ACMSIGMOD International Conference on Management of Data.2008.
  • 9胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649. 被引量:290
  • 10赵曦滨,井然哲,顾明.基于粗糙集的自适应入侵检测算法[J].清华大学学报(自然科学版),2008,48(7):1165-1168. 被引量:17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部