期刊文献+

钛合金真空自耗电弧熔炼过程的多尺度模拟 被引量:2

Multiscale Modeling of the Vacuum Arc Remelting Process of Titanium Alloy
原文传递
导出
摘要 采用以ANSYS软件建立的有限元模型对Ti6Al4V合金600 mm铸锭真空自耗电弧熔炼过程中的温度场变化以及熔炼电流对熔池形貌的影响进行了研究,并耦合微观模拟的CAFD模型对铸锭几个特征区域凝固前沿的枝晶生长和V元素溶质偏析进行了模拟。结果表明,熔炼电流的增大使熔池深度和糊状区宽度变大,使熔炼达到稳态的时间提前;熔炼达到稳态时,铸锭中心处形成较短而不是十分连续柱状晶组织,二分之一半径处和边部则形成连续的柱状晶组织。 : With the help of the software ANSYS, a finite element model was proposed to simulate the vacuum arc remelting process of a 0600 mm Ti6A14V alloy ingot, and the temperature field variation and effect of melting current on the morphology of molten pool in the process was studied. And then the re- suits were coupled to a microstructure simulating model, namely, the CAFD model, to simulate the den- drite growth and segregation behavior of the element V on the solidification front in several characteristic regions. According to the results, the molten pool becomes deeper and mushy zone becomes wider with the increase of the melting current, so that less time is required to achieve steady state of melting; in the steady state of the melting process, relatively short and discrete columnar dendrites grow in the center of the ingot, while continuous columnar dendrites form in the middle-radius and marginal regions.
出处 《钢铁钒钛》 CAS 北大核心 2013年第2期24-29,共6页 Iron Steel Vanadium Titanium
基金 国家重点基础研究发展计划(973计划 2011CB605502)
关键词 钛合金 电弧熔炼 真空自耗 枝晶生长 有限元法 CAFD模型 多尺度模拟 titanium alloy, arc remelting, vacuum remelting, dendrite growth, finite element method,CAFD model, multiscale modeling
  • 相关文献

参考文献14

  • 1Kiistner V,Oehring M, Chatteijee A, et al. Gamma titanium aluminides 2003[M]. eds Kim Y W, Clemens H, Rosenberger AH Warrendale, PA: TMS,2003.89.
  • 2Atwood R C, Lee P D, Simulation of the three-dimensional morphology of solidification porosity in an aluminium-silicon alloy[J]. Acta Materialia, 2003, 51(18) : 5447 -5466.
  • 3Lee P D, Hunt J D. Hydrogen porosity in directionally solidified aluminium-copper alloys: a mathematical model [J]. Acta Ma-terialia, 2001, 49(8) : 1383 -1398.
  • 4Lee P D, Chirazi A, Atwood R C, et al. Multiscale modelling of.solidification microstructures, including microsegregation andmicroporosity, in an Al-Si-Cu alloy [J]. Materials Science and Engineering : A, 2004, 365(1 - 2) : 57 - 65.
  • 5Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys : predicting primary den-drite spacing selection[ J]. Acta Materialia, 2003 , 51(10) : 2971 -2987.
  • 6Dong H B, Lee P D. Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys [ J ]. Acta Materia-lia,2005, 53(3); 659-668.
  • 7Yang X L, Dong H B,Wang W, et al. Microscale simulation of stray grain formation in investment cast turbine blades[ J]. Ma-terials Science and Engineering: A, 2004, 386( 1 -2) : 129 - 139.
  • 8Yuan L, Lee P D, Djambazov G, et al. Numerical simulation of the effect of fluid flow on solute distribution and dendritic mor-phology [J]. International Journal of Cast Metals Research, 2009 , 22(1 -2) : 204 - 207.
  • 9Zhao Xiaohua, Li Jinshan, Yang Zhijun, et al. Numerical simulation of fluid flow caused by buoyancy forces during vacuum arcremelting processf J]. Shanghai Jiaotong Univ. (Sci. ) , 2011,16(3) : 272 -276.
  • 10杨治军,赵小花,寇宏超,李金山,胡锐,周廉.Numerical simulation of temperature distribution and heat transfer during solidification of titanium alloy ingots in vacuum arc remelting process[J].Transactions of Nonferrous Metals Society of China,2010,20(10):1957-1962. 被引量:10

二级参考文献23

  • 1D.M. Shevchenko,R.M. Ward.Liquid Metal Pool Behavior during the Vacuum Arc Remelting of INCONEL 718[J]. Metallurgical and Materials Transactions B . 2009 (3)
  • 2P. D. Lee,A. Mitchell,A. Jardy,J.-P. Bellot.Liquid metal processing and casting[J]. Journal of Materials Science . 2004 (24)
  • 3R. L. Williamson,J. J. Beaman,D. K. Melgaard,G. J. Shelmidine,A. D. Patel,C. B. Adasczik.A demonstration of melt rate control during VAR of “Cracked” electrodes[J]. Journal of Materials Science . 2004 (24)
  • 4X. Xu,R. M. Ward,M. H. Jacobs,P. D. Lee,M. McLean.Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation[J]. Metallurgical and Materials Transactions A . 2002 (6)
  • 5J. P. Bellot,D. Ablitzer,B. Foster,A. Mitchell,S. Hans,E. Hess.Dissolution of hard-alpha inclusions in liquid titanium alloys[J]. Metallurgical and Materials Transactions B . 1997 (6)
  • 6SHI Z,GUO Z X.Numerical heat transfer modeling for wire casting. Materials Science Engineering A Structural Materials Properties Microstructure and Processing . 2004
  • 7RADOVIC Z,LALOVIC M.Numerical simulation of steel ingot solidification process. J Mater Process Tech . 2005
  • 8SU X.Computer aided optimization of an investment bimetal casting process. . 2001
  • 9ANDREEV A L,ANOSHKIN N F,BOCHVAR G A.Melting and casting of titanium alloys. . 1994
  • 10HUANG Zhi-hao.Material datum handbook for aero engine design. . 1993

共引文献23

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部