期刊文献+

基于非二次幂Curvelet变换的最小二乘匹配算法及其应用 被引量:2

A non-dyadic Curvelet transform based least-squares matching algorithm and its application
下载PDF
导出
摘要 本文提出了基于非二次幂Curvelet变换的最小二乘匹配算法.首先,根据输入地震信号的频谱和方向等特征进行非二次幂Curvelet变换,根据其特征不同,最大程度地将有效信号和噪声分开;然后,在噪声能量集中的非二次幂Curvelet子记录上对输入数据和预测的噪声模型进行最小二乘匹配滤波处理.本方法提高了常规最小二乘匹配算法在时间空间域内进行信噪分离的稳定性和准确性.对含有面波的实际地震数据进行测试,其结果表明本方法可以有效地压制面波干扰,特别是当面波和有效信号有交叉或重叠等现象出现时,能较好地保护反射同相轴信息.本方法还可用于对含自由表面多次波和层间多次波等地震数据进行自适应信噪分离. We propose a non-dyadic Curvelet transform based least-squares matching method. Firstly, in order to separate the signal and noise better, the input data is decomposed using non- dyadic Curvelet transform according to their spectral and directional characteristics. Secondly, the least-squares matching method is applied on non-dyadic Curvelet coefficients which contain noises most. Our approach improves the domain least-squares matching method. Res performs well not only in suppressing energ reflection events, especially in case of over used to adaptively subtract predictable inte internal multiples. stability and accuracy of conventional time-spatial ults of field records show that the proposed approach ies of surface waves, but also in protecting effective lapping events. The proposed approach can also be rferences such as free surface-related multiples and
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第4期1340-1349,共10页 Chinese Journal of Geophysics
基金 国家自然科学基金(40904030 40930421) 国家重点基础研究发展计划(973计划)项目(2009CB219404)资助
关键词 非二次幂Curvelet变换 最小二乘匹配算法 信噪分离 面波 Non-dyadic Curvelet transform, Least-squares matching method, Signal-noiseseparation, Surface wave
  • 相关文献

参考文献25

  • 1Cands E J, Donoho D L. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Curves and Surfaces. TN: Vanderbilt University Press, 1999.
  • 2Cands E J, Guo F. New multiseale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing, 2002, 82(11): 1519-1543.
  • 3Starck J, Murtagh F, Candes E, Donoho D. Gray and colorimage contrast enhancement by the Curvelet transform. IEEE Transactions on Image Processing, 12 : 706-717.
  • 4Candbs E J, Donoho D I.. Curvelets, muhiresolution representation, and scaling laws. Wavelet Applications in Signal and Image Processing VIII, A. Aldroubi, A. F. Laine, M. A. Unser eds., Proc. SPIE 4119.
  • 5Starck J L, Candcs E J, Donoho D L. The Curvelet transform for image denoising. IEEE Trans. Image Processing, 2002, 11(6) : 670 684.
  • 6Herrmann F J, Verschuur E. Curvelet-domain multiple elimination with sparseness constraints. Society of Exploration Geophysicists, Expanded Abstracts. 2004, 23( 1 ) .- 1333-1336.
  • 7Hennenfent G, Herrmann F J. Three-term amplitude-versus- offset (AVO) inverse on revisited by Curvelet and wavelet transforms. Society of Ea:ploration (ophysicists , E.rpanded Abstracts, 2004, 23= 211-214.
  • 8Chauris H, Nguyen T. Seismic demigration/migration in the Curvelet domain. Geophysics, 2008, 73(2): $35-$46.
  • 9Douma H, de Hoop M. Leading-order seismic imaging using Curvelets. Geophysics, 2007, 72(6) : $231-$248.
  • 10Hermann F J, Wang D, Hennenfent G, et al. Curvelet-based seismic data processing A muhiscale and nonlinear approach. Geophysics, 2008, 73(1): 706-716.

二级参考文献28

  • 1张素芳,徐义贤,雷栋.基于Curvelet变换的多次波去除技术[J].石油地球物理勘探,2006,41(3):262-265. 被引量:13
  • 2包乾宗,高静怀,陈文超.Curvelet域垂直地震剖面波场分离[J].西安交通大学学报,2007,41(6):650-654. 被引量:12
  • 3Candes E J,Donoho D L New tight frames of Curvelets and optimal representations of objects with C2 singularities[J].Comm on Pure and Appllied Mathematics,2004,57(2):219-266.
  • 4Candes E J,Demanet L,Donoho D L,et al.Fast discrete Curvelet transform[EB/OL].(2005-07-01)[2006-02-13].http://www.acm,caltech.edu/~emmanuel/publication.html.
  • 5Starck J L,Candes E J,Donoho D L The Curvelet transform for image denoising[J].IEEE Transactions on Image Processing,2002,11(6):670-684.
  • 6Starck J L,Murtagh F,Candes E J,et al.Gray and color image contrast enhaancement by the Curvelet transform[J].IEEE Transactions on Image Processing,2003,12(6):706-716.
  • 7Herrmann F J,Verschuur E.Curvelet-domain multiple elimination with sparseness constraints[C]// Expanded Abstracts of SEG 74th Annual Meeting.Denver,USA:Society of Exploration Geophysicists,2004:1333-1336.
  • 8Berkhout A J, Verschuur D J. Estimation of multiple scattering by iterative inversion, part I: theoretical considerations. Geophysics, 1997,62(5) :1586-1595
  • 9Weglein A B, Gasparotto F A, Carvalho P M, et al. An inverse scattering series method for attenuating multiples in seismic reflection data. Geophysics, 1997, 62: 1975-1989
  • 10Moses H E. Calculation of scattering potential from reflection coefficients. Phys. Rev., 1956,102. 559-567

共引文献75

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部