期刊文献+

基于马尔科夫随机场的岩性识别方法 被引量:41

Lithologic discrimination method based on Markov random-field
下载PDF
导出
摘要 通过地震反演数据识别岩性,是地震反演的一项基本任务.由于不同岩性的弹性参数范围常常存在一定程度的重叠,所以给岩性识别带来了很大的困难.本文以叠前反演的弹性参数为基础,通过马尔科夫随机场(Markov Random Field简写为MRF)建立先验模型,按照解释好的测井资料,对不同岩性的弹性参数进行统计,得到计算所需的参数,在贝叶斯(Bayesian)框架下建立岩性分类的目标函数,达到岩性识别的目的.通过马尔科夫随机场建立先验模型,能够建立相邻点间的相互作用关系,得到横向上延续的岩性剖面.本文使用一个楔形模型和Marmousi Ⅱ模型对该方法进行了测试,结果表明,该方法有效可行.同时,本文通过加入误差的方法,检验了反演存在误差对识别结果的影响. seismic in Lithologic discrimination by using parameters from seismic inversion is a basic task of version. Because different lithologies usually have, to some extent, the similar elastic parameters, it is difficult to identify lithology. To solve this problem, lithologic discrimination method through obtains based on Markov random-field is applied. This method firstly builds a priori model Markov random-field on the basis of elastic parameters of pre-stack inversion, and then Gaussian distribution parameters of iterative computation by means of coun parameters of different lithologies based on interpreted log data and creates lithologic discrimination under a Bayesian framework, and finally achieves discrimination. The priori model can establish interrelationships among adjac continuous lithologic sections. A wedge model and a Marmousi II model method. Results show that the method is feasible. Meanwhile, the influence lithologic discrimination accuracy is tested by adding error in this paper. obj the ent are ectlve aim 0 ting elastic function of f lithologic points and obtain used to of inversion test the error on
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第4期1360-1368,共9页 Chinese Journal of Geophysics
基金 国家自然科学基金项目(40974069 41174119) 国家科技重大专项(2011ZX05010 2011ZX05024)资助
关键词 马尔科夫随机场 邻域系统 岩性识别 Bayesian框架 Markov random-field, Neighborhood system, Lithologic discrimination, Bayesianframework
  • 相关文献

参考文献22

  • 1Ostrander W J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics, 1984, 49(10) .. 1637-1648.
  • 2何又雄,姚姚.基于参考道的岩性识别与岩性剖面非线性反演[J].石油勘探与开发,2005,32(3):61-63. 被引量:13
  • 3Mukerji T, Avseth T, Mavko G, et al. Statistical rock physics Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization. TheLeacling Edge, 2001, 20(3) .. 313-319.
  • 4Eidsvik J, Avseth P, Omre H, et al. Stochastic reservoir characterization using prestack seismic data. Geophysics, 2004, 69(4): 978-993.
  • 5Bachrach R. Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 2006, 71(5) : 053-063.
  • 6Larsen A L, Ulvmoen M, Omre H, et al. Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. Geophysics, 2006, 71 (5) : R69- R78.
  • 7Gunning J, Glinsky M E. Detection of reservoir quality using Bayesian seismic inversion. Geophysics, 2007, 72 (3) : R37- R49.
  • 8Buland A, Kolbjornsen O, Hauge R, et al. Bayesian lithology and fluid prediction from seismic prestack data. Geophysics, 2008, 73(3): C13-C21.
  • 9Eidsvik J, Omre H, Mukerji T, et al. Seismic reservoir prediction using Bayesian integration of rock physics and markov random fields: A North Sea example. The Leading Edge, 2002, 21(3): 290-294.
  • 10Spikes K, Mukerji T, Dvorkin J, et al. Probabilistic seismicinversion based on rock-physics models. Geophysics, 2007, 72(5) : R87-R97.

二级参考文献68

  • 1贾承造,赵文智,邹才能,李明,池英柳,姚逢昌,郑晓东,刘晓,殷积峰.岩性地层油气藏勘探研究的两项核心技术[J].石油勘探与开发,2004,31(3):3-9. 被引量:272
  • 2李建齐,何又雄.多元统计法地震岩性模拟的实现及解释[J].石油地球物理勘探,1994,29(A02):82-92. 被引量:2
  • 3邓继新,王尚旭,李生杰,王绪本.砂岩储层地震属性参数对孔隙流体的敏感性评价[J].石油学报,2006,27(6):55-59. 被引量:21
  • 4Goodway W,Chen T,Downton J.Improved AVO fluid detection and lithology discrimination using Lame petrophysieal parameters[A].In:SEG Expanded Abstracts[C].1997.183-186.
  • 5Avseth P.Mukerji T,Jorstad T,et al.Seismic reservoir mapping from 3-D AVO in the North Sea turbidite system[J].Geophysics,2001,66(4):1157-1176.
  • 6Batzle M,Wang z.Seismic properties of pore fluids[J].Geophysics,1992,57(6):1369-1408.
  • 7Han De-Hua,Batzle M.Fizz water and low gas saturated reservoirs[J].The Leading Edge,2002,22(2):395-398.
  • 8Mavko G,Mukerji T,Dvorkin J.The rock physics handbook:tools for seismic analysis in porous media[M].New York:Cambridge University Press,1998.106-160.
  • 9Duda R,Hart P,Stork D.Pattern classification[M].New York:John Wiley & Sons,2000.50-160.
  • 10Hastings W.Monte Carlo sampling methods using Markov chains and its applications[J].Biometrika,1970,57(1):97-109.

共引文献89

同被引文献451

引证文献41

二级引证文献464

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部