期刊文献+

滞后型泛函微分方程的Φ-有界变差解 被引量:1

Bounded Φ-variation solutions of retarded functional differential equations
下载PDF
导出
摘要 借助Henstock-Kurzweil积分和有界变差函数理论,建立了滞后型泛函微分方程的Φ-有界变差解的存在性定理,是对滞后型泛函微分方程和Henstock-Kurzweil积分相关结果的推广. The existence theorem of the bounded Φ-variation solution to retarded functional differential equations is established by using the Henstock-Kurzweil integrals and the function of bounded Φ-variation that is introduced by Musielak and Orlicz.This result is an essential generalization on retarded functional differential equations and Henstock-Kurzweil integrals.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期10-15,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11061031) 甘肃省555创新人才工程资助项目 西北师范大学科技创新工程资助项目
关键词 Henstock-Kurzweil积分 滞后型泛函微分方程 Φ-有界变差解 Henstock-Kurzweil integarl retarded functional differential equations bounded Φ-variation solution
  • 相关文献

参考文献10

  • 1LEE Peng-yee. Lanzhou Lectures Henstock Integration[M]. Singapore.- World Scientific, 1989.
  • 2SIKORSKA-NOWAK A. Retarded functional differential equations in Banach spaces and Henstock- Kurzweil integrals [ J ]. Demonstra Mathematica, 2002, 35(1): 49-60.
  • 3DING X F, YE G J. Generalized gronwall-bellman inequalities using the Henstock-Kurzweil integral[J]. Sountheast Asian Bull Math, 2009, 33 (4) : 703- 313.
  • 4李宝麟,吴从炘.Kurzweil方程的Φ-有界变差解[J].数学学报(中文版),2003,46(3):561-570. 被引量:23
  • 5MUSIELAK J, ORLICZ W. On generalized variation Ⅰ[J]. Studia Math, 1959, 18: 11-41.
  • 6CHEW T S, Van BRUNT B, WAKE G C. On retarded functional differential equations and Henstock-Kurzweil integarals [ J ]. Differential Integral Equations, 1996, 9(3):569-580.
  • 7尤秉礼.常微分方程的补充教程[M].北京:人民教育出版社,1992.
  • 8FEDERSON M, SCHWABIK S. Stability for retarded functional differential equations [J]. Ukrainian Mathematical Journal, 2008, 611 ( 1 ) : 121-140.
  • 9TVRDY M. Differential and integaral equations in the space of regulated functions [J]. Mere Differential Equations Math Phys, 2002, 25: 1-104.
  • 10SCHWABIK S. Generalized Ordinary Differential Equations[M]. Singapore: World Scientific, 1992.

二级参考文献15

  • 1Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 1957, 7: 418-449.
  • 2Kurzweil J., Vorel Z., Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 1957, 23: 568-583.
  • 3Kurzweil J., Generalized ordinary differential equations, Czechoslovak Math. J., 1958, 8: 360-389.
  • 4Gicbrnan I. I., On the reigns of a theorem of N. N. Bogoljubov, Ukr. Mat. Zurnal, 1952, IV: 215--219 (in Russian).
  • 5Krasnoelskj M. A., Krein S. G, On the averaging principle in nonlinear mechanics, Uspehi Mat. Nauk, 1955,3:147-152 (in Russian).
  • 6Schwabik S.: Generalized ordinary differential equations, Singapore: World Scientific, 1992.
  • 7Chew T. S., On kurzwell generalized ordinary differential equations, J. Differential Equations, 1988, 76:286-293.
  • 8Schwabik S., Generalized volterra integral euuations, Czechoslovak, Math. J., 1982, 82: 245-270.
  • 9Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, Differential Equations, 1977, 28: 224-243.
  • 10Musielak J.. Orliez W.. On generalized variations (I). Studia Math., 1959, 18: 11-41.

共引文献22

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部