期刊文献+

一类具偏差变元的高阶泛函微分方程的周期解 被引量:3

Existence of periodic solutions for a kind of higher order functional differential equations with a deviating argument
下载PDF
导出
摘要 利用重合度理论和一些分析技巧,获得了一类具偏差变元的高阶泛函微分方程x(2n)(t)+h(x′(t))+f(x(t))x′(t)+g(t,x(t-τ(t)))=p(t)周期解存在的充分性条件. By employing the coincidence degree theory and some analysis techniques,some sufficient conditions on the existence of periodic solutions for a class of higher order functional differential equations with a deviating argument such asx(2n)(t)+h(x′(t))+f(x(t))x′(t)+g(t,x(t-τ(t)))=p(t)are obtained,which generalizes and improves some known results.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期16-19,共4页 Journal of Northwest Normal University(Natural Science)
基金 江西省教育厅科学技术研究资助项目(GJJ11234) 国家级特色专业数学与应用数学资助项目(教高函[2010]15号) 上饶师范学院大学生学术科技研究资助项目
关键词 泛函微分方程 周期解 偏差变元 重合度 functinal differential equation periodic solution deviating argument coincidence degree
  • 相关文献

参考文献12

二级参考文献36

  • 1黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 2黄先开.具有时滞的保守系统的2π周期解[J].系统科学与数学,1989,9(4):298-308. 被引量:17
  • 3Burton T A. Stability and Periodic Solution of Ordinary and Functional Differential Equations. Academic Press, Orland, FL., 1985.
  • 4Mawhin J. Periodic solutions of some vector retarded functional differential equations. J. Math. Anal. Appl., 1974, 45: 588-603.
  • 5Gaines R E, Mawhin J. Coincide Degree and Nonlinear Differential Equations. Lecture Notes in Math., Spring-Verlag, Belin, 1977.
  • 6Lu S, Ge W. Periodic solutions for a kind of Li~neard equations with deviating arguments. J. Math. Anal. Appl., 2004, 249: 231-243.
  • 7Lu S, Ge W. Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument. J. Math. Anal. Appl., 2005, 308: 393-419.
  • 8Liu B, Huang L. Existence and uniqueness of periodic solutions for a kind of Li~nard equation with a deviating argument. Applied Mathematics Letters, 2008, 2i(1): 56-62.
  • 9Lu S, Ge W. Periodic solutions for a kind of second order differential equation with multiple deviating arguments. Applied Mathematics and Computation, 2003, 146: 195-209.
  • 10Hardy G H, Littlewood J E and Polya G. Inequalities. London: Cambridge University Press, 1964.

共引文献168

同被引文献30

  • 1杜波.一类具偏差变元的二阶微分方程周期解[J].安庆师范学院学报(自然科学版),2006,12(2):12-14. 被引量:3
  • 2杜波,鲁世平.一类具偏差变元的二阶微分方程周期解[J].数学研究,2007,40(1):16-21. 被引量:9
  • 3李晓静.具偏差变元的高阶中立型泛函微分方程的周期解存在性问题[J].纯粹数学与应用数学,2007,23(3):394-401. 被引量:3
  • 4WANG G Q ,CHENG S S. A priori bounds for period- ic so lutions of a delay Rayleigh equation[J]. Applied Mathematics and Computation, 1999,12(3) :41-44.
  • 5LIU B W, HUANG L H. Periodic solutions for a kind of Rayleigh equation with a deviating argument[J]. J Math Anal Appl,2006,321:491-500.
  • 6LI Y Q, HUANG L H. New results of periodic solu- tions for forced Rayleigh-type equations[J]. Journal of Computational and Applied Mathematics, 2008, 221:98-105.
  • 7GAINS R E, MAWHIN J L. Coincidence degree and nonlinear di. erential equations [M]. Berlin: Springer- Verlag, 1977.
  • 8WANG X M. New results on periodic solutions for a class of Rayleigh type p-Laplacian equations wilh devi ating argumenls[J]. Nonlinear Oscillations, 2012, 15 (3) :331-336.
  • 9Wang X M. New results on periodic solutions for a class of Raylcigh type-Laplacian equations with deviating argu- ments[J]. Nonlinear Oscilllations, 2012, 15(3) : 331- 336.
  • 10Gains R E, Mawhin J L. Coincidence degree and non- linear differential equations[M]. Heidelberg : Springer- Verlag, 1977 : 95-169.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部