期刊文献+

新的广义混合矢量平衡问题(英文) 被引量:1

New Generalized Mixed Vector Equilibrium Problems
下载PDF
导出
摘要 在Banach空间内引入和研究了一类新的广义混合矢量平衡问题.应用KKM定理和Nadler不动点定理,在适当假设下对这类新的广义混合矢量平衡问题的解证明了2个新的存在性定理. In this paper, a new class of generalized mixed vector equilibrium problems is introduced and stud- ied in Banach spaces. By applying KKM theorem and Nadler' s fixed point theorem, some new existence theorems of solutions for the class of generalized mixed vector equilibrium problems are proved under suitable assumptions.
作者 丁协平
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期469-475,共7页 Journal of Sichuan Normal University(Natural Science)
基金 supported by the Sichuan Province Leading Academic Discipline Project(SZD0406)~~
关键词 广义混合矢量平衡问题 广义混合矢量似变分不等式问题 Nadler定理 KKM定理 generalized mixed vector equilibrium problem generalized mixed vector variational-like inequality problem Nadler' s theorem KKM theorem
  • 相关文献

参考文献21

  • 1Giannessi F. Theorems of Alternative. Quadratic Programs and Complementarity Problems[ C]//Cottle R W, Giannessi F, Lions J L, eds. Variational Inequalities and Complementarity Problems. New York : John Wiley & Sons, 1980 : 151 - 186.1.
  • 2Hartman P, Stampacchia G. On some nonlinear elliptic differential functional equations [ J 1. Acta Math, 1977,115:271 - 310.
  • 3Ding X P. Tile generalized vector quasi -variational- like inequalities[J]. Comput Math Appl, 1999,37:57 -67.
  • 4Giannessi F. Vector Variational Inequalities and Vector Equilibrium [ C]. Dm'drecht: Kluwer Academic Publishers,2000:113 - 123,125 - 140,307 - 320,351 - 36.
  • 5Ding X P, Salahuddin. Vector quasi -variational -like inequalities in Hausdorff topological vector spaces [ J ]. Optim Lett,2012, DOI : 10. 1007/s11590 - 012 - 0464 - x.
  • 6Ceng L C, Guu S M, Yao J C. Generalized vector equilibrium like problems without pseudomonotonieity in Banach spaces [ J ]. J Inequal Appl,2007,2007:1 - 13.
  • 7Chadli O, Yang X Q, Yao J C. On generalized vector pre - variational and pre - quasivariational inequalities [ J ]. J Math Anal Appl, 2004,295 : 392 - 403.
  • 8Chen G Y, Goh C J, Yang X Q. Existence of a solution for generalized vector variational inequalitie[J]. Optimization,2001,50 : 1 -16.
  • 9Giannessi F. On Minty Variational Principle: In New Trends in Mathematical Programming[M]. Dordrecht: Kluwer Academic Publishers, 1997.
  • 10Khan M F, Salahuddin. On generalized vector variational like inequalities [ J ]. Nonlinear Anal : TMA,2004, 59:879 - 889.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部